Quantum Mechanics, Galileo, and Design

quantum mechanics
One of the great frontier areas of physics today is quantum mechanics. This area has to do with the very small. It deals with the construction of electric charge, mass, gravity, and how matter behaves in space/time. Things that happen in quantum mechanics sometimes seem to violate the fundamental laws of physics.

One of the major concepts of quantum mechanics is simultaneity. The New Physics Dictionary says “Computational scientists wonder at the thought that a quantum system could exist in a superposition of two different conditions or locations simultaneously–this possibility is, in fact, being realized in the exploding field of quantum computation.” In other words, in the quantum world, one thing can be in two places at the same time.

Common sense tells us that in our everyday experience a particle cannot be in two different widely-separated locations at the same time. That does not seem to apply to subatomic particles. What works in the world in which we live where time and space have specific boundaries, does not work in the subatomic world of quarks, neutrinos, mesons, and antimatter.

As scientists conduct more research, it has become obvious that most of the standard gravitational rules still apply in the quantum area. Scientists reporting on arXiv.org have announced that their studies show the equivalence principle applies to quantum particles just as it did when Galileo showed that gravity works the same on all objects no matter what their mass. A 50-ton boulder and a bowling ball dropped from the same elevation will hit the ground at the same time. When scientists conduct similar experiments with quantum particles, the same result takes place. They have also found that the conservation laws of energy are consistent in the quantum area.

The Mind that invented matter and formulated space/time used fixed principles and laws to design the charge and the mass. The result is a system that works to make life possible on this planet. Whether we look up or down, we find that a wonder-working hand has gone before.
Reference: https://www.sciencenews.org/article/key-einstein-principle-survives-quantum-test
–John N. Clayton © 2017