Let There Be Light

Let There Be Light - X-rays from the Whirlpool Galaxy



The Whirlpool Galaxy M51 and companion M51B. The green glow at the center of each is X-ray radiation from black holes.

The third verse of the first book in the Bible quotes God, saying, “Let there be light.” Most people don’t understand the full meaning and impact of that statement. For the past two days, we have examined how the ability to see invisible light revolutionized astronomy. First, we looked at the forms of light at frequencies below the visible spectrum. Today, let’s look at frequencies above the light we can see.

Higher frequencies mean shorter wavelengths, and electromagnetic energy above the frequency of visible light has wavelengths short enough to penetrate living cells and damage them.

Ultraviolet is the first band of light above the visible spectrum. The Hubble Space Telescope is the leader in observing ultraviolet light coming from the hot and energetic formation of young stars. Auroras on gaseous planets like Jupiter also emit ultraviolet light. The ability to see the invisible UV light helps us understand more of the process God used in creation.

Our Sun is also a source of ultraviolet light, and everyone knows UV light can cause painful sunburns. Because of its short wavelength, UV light can penetrate and damage cells resulting in skin cancer. God has given Earth an upper atmosphere ozone layer that absorbs much of the ultraviolet radiation. While protecting us from health damage, the atmosphere makes ultraviolet astronomy impossible on Earth. That’s why the Hubble Space Telescope leads in UV observation of the universe.

Above ultraviolet light, we find X-rays that are even more harmful to living cells. This band of invisible light energy can penetrate matter. Because of that, they are useful in medicine for doctors to see inside your body. However, medical X-rays must be limited because they can cause DNA mutations leading to cancer.

In astronomy, X-rays allow astronomers to study some of the hottest places in the universe, such as supermassive black holes and neutron stars. Thankfully, God has placed us far from black holes and neutron stars. However, our Sun also produces X-rays, but Earth’s atmosphere blocks X-rays. Therefore, X-ray telescopes, such as NASA’s NuSTAR mission, must be located in space.

Finally, let there be light at the top of the invisible spectrum. Astronomers use the shortest wavelength, gamma rays, to study the creation. Unfortunately, gamma rays have the highest energy and are the most dangerous to living cells. Supernova explosions release gamma rays, and space telescopes such as NASA’s Fermi and Swift can detect them. Fortunately, those gamma-ray-producing events are far from Earth. However, nuclear explosions on Earth also produce gamma rays, and the Sun occasionally produces gamma-ray flashes in solar flares.

By studying all of these forms of light, astronomers today know much more about the universe and the processes God has used to create and sustain it. As we look into the night sky, we are looking back in time and seeing the various frequencies of electromagnetic energy. It is light, both visible and invisible, and it tells us of the power and wisdom of the process that brought our planet and the life upon it into existence. Light is energy, and energy is matter (e=mc2). Knowing that, we realize what a profound statement Genesis 1:3 contains – “Let there be light.”

— Roland Earnst © 2023

For more information on this picture, click HERE.

How Far Away Is the Sun?

How Far Away Is the Sun?Does it matter how far away the Sun is? Absolutely yes. The picture shows the order of the planets in our solar system, but not their distance from the Sun. So how far away is the Sun from Earth?

Any star that has planets orbiting it may potentially create a “habitable zone” where the light and heat are just right for the possibility of life to exist. Earth resides in the middle of the Sun’s habitable zone with Venus and Mars near the edge of the zone. Of course, there are many other factors required to support any kind of life, and it appears that Earth is the only planet in our solar system that has all of those factors. Earth has everything needed to support not just primitive life, but advanced life.

So what is the range of the habitable zone? That depends on the star. The size and brightness of the star are critical. Another essential factor is the type of radiation emitted by the star. Our Sun has the just-right radiation. Other stars may emit x-rays, gamma rays, or other deadly radiation in amounts that would destroy all life and prevent a habitable zone from existing.

Back in the eighteenth century, scientists determined the distance to the Sun by watching a transit of Venus across the Sun. Venus passes between the Earth and the Sun twice every hundred years or so. By measuring the time of the transit of Venus from two locations on Earth, scientists were able to use triangulation and simple math to calculate the distance to the Sun.

But the question was, how far away is the Sun? The Sun is about 93,000,000 miles (150,000,000 km) away from us. Since the speed of light is 186,000 miles (300,000 km) per second, it takes about eight and one-third minutes for the light from the Sun to reach the surface of the Earth. The energy the Sun delivers to our planet is just right to make life possible.

If someone asks you “how far away is the Sun,” you can say it is the “just right” distance. There are so many “just right” features of our planet that we can genuinely say we are in the “Goldilocks Zone.” Some think it was all just an accident, but we believe it was God’s plan and design.
— Roland Earnst © 2019

Properties of Light

Properties of LightWhen you open your eyes in the morning, take a minute to thank God that you can see. We should reflect upon how good it is to have light instead of the darkness of night. The properties of light make it unique and special.

I am keenly aware of my gift of sight because of a long association with Glynn Langston, who is blind and manages our outreach to the visually impaired. In my lectures, I frequently refer to Edwin Abbott’s book Flatland to help people understand dimensions and how the spiritual is different from the physical. Glynn was born blind, so he is unable to visualize the concept of a sphere crossing a plane and leaving the outline of a circle. He has been kind about it, but my wife once said to me, “How do you expect a blind man to visualize anything!” Even those of us who can see have trouble understanding the properties of light beyond what meets the eye. Radio waves, gamma rays, X-rays, ultraviolet rays, and infra-red rays are all light!

The properties of light make it difficult to comprehend. The most general definition of light is that it is the energy released when a charge changes momentum. The bundle of energy released is called a photon, and the amount of change in momentum determines the energy of the released light. Even in the visible spectrum for humans, the different colors we see are determined by how much energy the light has. Violet has much more energy than red. Ultraviolet has more energy than violet. X-rays and gamma rays have even more energy, but they are still light. Infrared, and radio waves have lower energies than red. That is why infrared warms you and ultraviolet gives you a sunburn. It is also why radio waves can pass through the walls of your home without causing damage and gamma rays can also pass through things, but they will do significant damage.

In the creation process, there had to be special accommodations for the properties of light coming to Earth from the Sun and from outer space. The ozone layer had to be in place to absorb ultraviolet and avoid damage to life. The eyes of every living thing that uses some form of sight had to be designed to function in the part of the spectrum that fit its diet. Rattlesnakes, for example, have specialized sight organs to see in the infrared. Because they eat rodents whose bodies give off radiation in the infrared, a rattlesnake can see its prey on the darkest night. Nearly every insect sees some part of the spectrum other than the colors visible to humans. That is how a mosquito finds you and how insects navigate at night.

Not every star in the sky gives off the properties of light that are needed for life to exist. Some stars radiate in the X-ray part of the spectrum, and others radiate energies too low to be useful to life. Even our trees and shrubs require light in the green part of the visible spectrum to know when to shed their leaves in preparation for winter. In Job 38-41, God spoke to Job to show His wisdom and design and convince Job of his ignorance. Many of the designs God pointed to are connected to light. “Where is the way where light dwells, and where is the location of darkness?” (38:19) “By what process is light parted which scatters the east wind upon the earth?” (38:24) “How does the eagle seek the prey and see that which is afar off?” (39:29)

The Bible speaks of light that is not produced by the acceleration of an electric charge. The most important of these is described in Matthew 5:14-16: “You are the light of the world … let your light so shine before men that they may see your good works and glorify your Father which is in heaven.” Let those of us who are Christians not only be amazed by God’s design of the properties of light and the world in which we live, but let us also strive to be the light Jesus calls us to be.
— John N. Clayton © 2019