Galactic Coincidences?


On a clear, moonless night, you can look up and see the Milky Way. Actually, we are in the Milky Way, a spiral galaxy of 200 billion stars one of which is our Sun. We are located in a spiral arm of that galaxy 26,000 light-years from its center. Our location seems to indicate many galactic coincidences.

At the center of the Milky Way (and perhaps all galaxies), there’s a black hole sending out lethal radiation to a distance of 20,000 light-years. Farther out than 26,000 light-years from the center, heavy elements that are vital to our existence and survival are scarce. We are in what astronomers call the “galactic habitable zone.”

Spiral galaxies rotate, and we are near the co-rotation spot where our solar system moves at almost the same rate as the spiral arm we are in. If we were in precisely the co-rotation spot, we would experience gravitational “kicks” which could send us out of the habitable zone. If we were far away from the co-rotation spot, we would fall out of the arm and be subjected to deadly radiation.

In the vast majority of spiral galaxies, the habitable zone and co-rotation spot do not overlap. Most other spiral galaxies are not as stable as ours. Most galaxies are not spiral galaxies and would not have a stable location for advanced life.

Furthermore, galaxies exist in clusters, and our cluster called the “Local Group” has fewer, smaller, and more spread-out galaxies than nearly all other clusters. Most galaxies are in dense clusters with giant or supergiant galaxies which create deadly radiation and gravitational distortion making advanced life impossible.

These are only a few of the many factors that “just happen to be” true of the place where we live. Are these just galactic coincidences? Some say it’s all accidental. We say it’s a grand design by a Master Designer. The next time you look up at the Milky Way, thank God that we are precisely where we are.
–Roland Earnst © 2018

A Quiet Neighborhood is a Good Neighborhood

Beyond the Quiet Neighborhood
At a June 7 meeting of the American Astronomical Society, Benjamin Hoscheit presented information gained from studying 120,000 galaxies. The study agreed with earlier findings that our Milky Way galaxy is located in the largest cosmic void that we can observe. When scientists look one billion light-years out into the universe, they find that the cosmic density becomes much greater. The conclusion they have reached is that the Milky Way is in a relatively open area of space about two billion light-years across. We live in a quiet neighborhood.

The computer image from the Millennium Simulation Project illustrates the dense filaments of dark matter stretching through space. Galaxies are mostly clumped along the filaments. The Milky Way resides in one of the voids between those strands. What are the implications of that? Galaxies tend to be in clusters, and our cluster is called the Local Group. A typical galaxy cluster will have 10,000 galaxies close together. (Close by cosmic standards.) The Local Group has only forty galaxies, and all of them are dwarf galaxies except the Milky Way and Andromeda which are medium-sized. If there were large galaxies close to us, their gravity could distort the spiral structure of the Milky Way making advanced life on Earth impossible.

The Milky Way is a spiral galaxy—the only kind of galaxy capable of supporting advanced life. Star formation drives the spiral motion. Star formation requires the infusion of gas and dust which the small galaxies provide. Clusters of galaxies reside inside superclusters. Our Local Group cluster is on the outer fringe of the Virgo supercluster. If it were near the center of Virgo, the massive clusters there would absorb the Local Group and make life impossible. Also, our solar system is located in the best position within our galaxy at about two-thirds of the distance from the center. In the center of the Milky Way (and most galaxies), there is a massive black hole that would swallow our solar system if we were anywhere near it. If we were farther out in the spiral, the solar system would be subject to massive instability, again making life impossible.

Of course, Earth is also located in the solar habitable zone where we are not too close or too far from the Sun. One final thing to note is that in this cosmic void and the position in our galaxy, we are at the optimum location for observing all of the things I mentioned. We have an excellent view of the universe. We are in more than a quiet neighborhood. We are in the “Goldilocks Zone” where everything is “just right.”

You could say that we got lucky and all of these things, and many others, are merely freak accidents. We believe that God had a reason for putting us where we are, and has given us a purpose for being here.
–Roland Earnst © 2017

WIMPS and God’s Design

Spiral Galaxy M74
Spiral Galaxy M74

One of the most interesting areas of scientific research today is the study of dark matter. We have known for more than half a century that galaxies are groups of billions of stars revolving around a core. Science had assumed that the glue holding galaxies together was the gravitational force produced by the mass of the stars in the galaxy. The problem with this explanation was that the stars were spiraling too fast for the gravity produced by their mass to hold the galaxy together.

If you stand in the center of a circle and spin a bucket of water on a rope, you have to spin it at a certain speed to keep the water in the bucket. If you go too slow, the bucket will hit the ground, and if you go too fast, it will break the rope. In the case of galaxies, the stars were going so fast for the gravity of the stars to hold the system together. Some other gravitational force must be the glue doing the job. The discovery of black holes in the center of galaxies was thought to be a possible answer, but the speed was much too fast for even that source. The amount of mass it would take to hold some of the galaxies together is as much as 85% higher than what we can observe.

This problem led to the proposal that there is a missing mass. Scientists suggested particles called WIMPS, which is an acronym for “weakly interacting massive particles.” For some time now, experiments have been conducted to find evidence for WIMPS. The Large Hadron Collider near Geneva, Switzerland, has been smashing protons together in hopes of detecting the particle. The Large Underground Xenon experiment in South Dakota has been looking for traces of them as well. So far neither attempt has been successful. In an article in Scientific American (October 2016, page 16) Edward Kolb, who was involved in proposing the existence of WIMPS, said: “We are more in the dark about dark matter than we were five years ago.” David Spergel who is an astrophysicist at Princeton says, “…we now need more hints from nature about where to go next.”

It seems that God has already taught us quite a bit about the complexity of creation. Thanks to Isaac Newton we know that mass has a connection to gravity. Thanks to Albert Einstein we know that the shape of space has something to do with it as well. Making a galaxy is not a simple task. Just like the making of electric charge, the process involves understandings that science is just beginning to comprehend. Quantum mechanics has taught us that a whole new set of laws governs what happens in forming these building blocks of what we see.

In Proverbs 8:1,22-23 Wisdom speaks and says, “Does not wisdom call, and understanding lift up her voice?…The Lord possessed me at the beginning of His way, Before His works of old. From everlasting I was established, from the beginning, from the earliest times of the earth.” It is a wonderful challenge to modern science to understand how the Lord made the building blocks that led to what we can see in space. When we finally understand, we need to step back and say, “The heavens are telling of the glory of God; And their expanse is declaring the work of His hands” (Psalms 19:1, NAS).
–John N. Clayton © 2017