Algae Solutions to Human Problems

Algae Solutions to Human ProblemsWhen you hear the word algae, negative thoughts may come to your mind. You may have problems with algae growths in your pond or birdbath. You have heard about toxic algal blooms that have hit seafood industries on the Pacific Coast. Many of us have viewed the red tide in Florida first hand. There are lawsuits in progress against companies that allowed chemical runoffs to trigger the destructive growth of algae in lakes and the ocean causing economic hardship for fishing trades and seafood producers. Unlike human-caused algae problems, there is a promise of algae solutions to human problems.

Consider the following facts:

Algae is probably our best tool for reducing greenhouse gases. Algae take carbon dioxide from the air and produce oxygen. More than half of the oxygen in Earth’s atmosphere comes from converting carbon dioxide to oxygen and algae is the primary agent for doing that. There is good evidence that excessive algae growth in the past caused global cooling.

Phytoplankton algae grow world-wide and make up the base of aquatic food-chains, eventually leading to most of the seafood we eat.

Giant kelp, which are algae, provide food and protected ecosystems for ocean creatures.

Cyanobacteria, also known as blue-green algae, such as spirulina contain proteins, vitamins, minerals, and essential fatty acids. People in many countries have been harvesting spirulina for nutrition since the 1940s. Japanese cooks use algae in soups and sushi wrappers. The additives agar and carrageenan from algae are used in ice cream and jellies.

Symbiotic relationships exist between algae and coral, helping to prevent storm damage to coral reefs that house sea life and protect shoreline structures. Algae solutions to human problems are many.

Research continues into how we can use algae to produce fuel. New foods made of algae are being developed. Most recently sea grapes, which are algae, have been used as green caviar because their texture and appearance looks like caviar and they are very nutritious.

God has provided for us in so many ways that it has taken our entire human history to discover them. For many years people did not eat tomatoes because they were considered to be poisonous. That seems silly to us today when whole industries are built around the tomato. In the future, perhaps we can say the same of algae. These rootless, leafless plants have incredible potential to provide algae solutions to human problems both here on Earth and as we travel into outer space.
— John N. Clayton © 2019

Reference: Science Digest, July 2019

Solar System Design

Solar System DesignAstronomers today use technology to examine areas of the cosmos far removed from our solar system. The fact that they are finding the other systems are very much different from ours should tell us something. In fact, the more we study those other systems, the more we learn about our solar system design and why it is the way it is.

One interesting fact about other systems is that even though some planets are very large and obviously gaseous, they can exist very close to their stars. Astronomers in the past explained the fact that the inner planets of our own solar system are rocky and hard by saying that the Sun burned off the gases and left the rocky material. That may be partially true, but in 2002 astronomers discovered a planet they named OGLE-TR-56b. It is about the same mass as Jupiter but over 30 percent larger. It has to be a gaseous planet to have such a low density.

The surprising thing is that OGLE-TR-56b orbits its star at an average distance of only 2 million miles (3.2 million km). Our innermost planet Mercury is 36 million miles (58 million km) from the Sun. The outer atmosphere of this planet must be around 3000°F (1650° C). It is evident that gaseous planets can exist very close to their stars, so our old explanation of the inner planets in our solar system design is vastly oversimplified.

Most of the planets we see around other stars are very large, which is not surprising since it is easier to see a big planet than a small one. One extra-solar planet is 17 times as massive as Jupiter. The strange thing is that many of the giant planets are closer to the Sun than Venus. Old theories of planet formation suggested that due to the large gravity values of stars, it was impossible for planets to form close to the stars. We now know that is not true.

Science programs on television have delighted in proposing that the cosmos is full of planets and that every galaxy has literally millions of planets. The hope is that if you have enough planets, the chance of having another Earth is improved. We now know that many galactic systems do not have planets at all. The composition and age of galactic systems obviously have a major impact on whether planets can exist, but claims of billions of Earth-like planets in the cosmos are highly exaggerated.

The type of star also has an impact on whether planetary systems can form. Most stars in the cosmos are binary systems containing more than one star. A planet can orbit the stars at a great distance, but shifting gravity fields make planets unlikely if the stars are close together, as most are. How much metal there is in a star system affects planet formation. Metal content varies within galaxies as well as between stars. A part of space dominated by gases like hydrogen and helium are not as likely to produce planets as areas where there are large amounts of iron, manganese, cobalt, and the like. Solar system design requires the right kind of star.

Perhaps one of the most exciting lessons we have learned from other solar systems is that the shape of the orbits of planets in our solar system is very unusual. Most of them have very circular orbits meaning that their distance from the Sun does not vary a great deal. Venus has an orbit that is .007 with 0 being a perfect circle and 1 is a straight line. Pluto has the most elliptical orbit, but even Pluto is less than .3 on the 0-1 scale. Our solar system design is unusual.

Circular orbits like ours are very rare in other solar systems where .7 is a very common orbital value, and virtually all orbits exceed .3. If a planet swings far out from its star and then comes much closer, it should be obvious that temperature conditions are going to be extreme. Not only will such a planet have extreme conditions itself, but it will have a very negative effect on any planets that do have a circular orbit in the system. If Jupiter came closer to the Sun than Earth with each orbit, imagine the conditions on Earth as Jupiter went by us.

We now know that our gas giant planets (Jupiter, Saturn, Uranus, and Neptune) are essential to us because their gravitational fields sweep up any debris from outer space. Without those planets, comets and asteroids would pound Earth and life here would be difficult if not impossible. The fact that they are outside Earth’s orbit at a considerable distance and in a circular orbit allows us to exist in a stable condition for an extended time. The comets that do enter our system by avoiding the gas giants do not come in along the plane of the solar system called the ecliptic. Coming in from other directions, they have no chance of hitting Earth since they are not in the plane of Earth’s orbit around the Sun.

Like everything in science, the study of the cosmos and other solar systems speaks eloquently to us about the design and planning that is part of everything in the creation. As we discover more data, other factors will surely tell us how unique our solar system design is. In the twenty-first century, we have more reasons than any humans have ever had to realize the truth of Psalms 19:1.
— John N. Clayton © 2019

Jupiter Is in Opposition

Jupiter Is in OppositionJune 10, 2019, is an excellent time to observe the largest planet in our solar system. The reason is that Jupiter is in opposition to our Sun.

When astronomers say that Jupiter is in opposition, they mean that planet Earth is passing between the Sun and Jupiter. At this time, Jupiter will rise in the east as the Sun sets in the west, and it will set in the west as the Sun rises in the east. In other words, Jupiter will be visible all night long, and it will be at its highest point in the sky in the middle of the night.

The picture was taken by the JunoCam on NASA’s spacecraft Juno which is currently orbiting Jupiter. NASA posts the raw images online and encourages individuals to download and process them. Citizen scientist Kevin M. Gill enhanced this one. You can find access to the raw images and see the work of other citizen scientists by clicking HERE.

When you see Jupiter in the sky tonight, it will not look like this picture, but it will be the brightest object in the sky. Jupiter is not a rocky planet like Earth. It’s a gas giant which if were 80 times more massive, would be hot enough to set off nuclear reactions in its core. Then it would be a star giving off its own light instead of just reflecting the Sun’s light. However, if you could lump all the other planets in our solar system together (including Earth), Jupiter would be 2.5 times more massive than them all.

Why do we need such a huge gas giant in the outer solar system? As we have said in previous posts, Jupiter is a comet sweeper. With its massive size and gravity, Jupiter protects us from objects such as comets coming from outside our solar system. In the 1990s, NASA observed Jupiter pulling apart and destroying comet Shoemaker-Levy 9. You can read about that in our previous post HERE. Jupiter also affects Earth’s climate cycles, which you can read about HERE.

Jupiter is in opposition about every 13 months. Last year opposition occurred in May. Next year it will be on July 14. If you miss seeing Jupiter tonight because of cloudy weather or any other reason, don’t despair. Jupiter will be closest to Earth on June 12, and it will continue to be visible, but right now it’s visible all night long.

While Jupiter is in opposition, or at any other time, look up and thank God that He has created such a marvelous and unique solar system to make life possible.
— Roland Earnst © 2019

How Far Away Is the Sun?

How Far Away Is the Sun?Does it matter how far away the Sun is? Absolutely yes. The picture shows the order of the planets in our solar system, but not their distance from the Sun. So how far away is the Sun from Earth?

Any star that has planets orbiting it may potentially create a “habitable zone” where the light and heat are just right for the possibility of life to exist. Earth resides in the middle of the Sun’s habitable zone with Venus and Mars near the edge of the zone. Of course, there are many other factors required to support any kind of life, and it appears that Earth is the only planet in our solar system that has all of those factors. Earth has everything needed to support not just primitive life, but advanced life.

So what is the range of the habitable zone? That depends on the star. The size and brightness of the star are critical. Another essential factor is the type of radiation emitted by the star. Our Sun has the just-right radiation. Other stars may emit x-rays, gamma rays, or other deadly radiation in amounts that would destroy all life and prevent a habitable zone from existing.

Back in the eighteenth century, scientists determined the distance to the Sun by watching a transit of Venus across the Sun. Venus passes between the Earth and the Sun twice every hundred years or so. By measuring the time of the transit of Venus from two locations on Earth, scientists were able to use triangulation and simple math to calculate the distance to the Sun.

But the question was, how far away is the Sun? The Sun is about 93,000,000 miles (150,000,000 km) away from us. Since the speed of light is 186,000 miles (300,000 km) per second, it takes about eight and one-third minutes for the light from the Sun to reach the surface of the Earth. The energy the Sun delivers to our planet is just right to make life possible.

If someone asks you “how far away is the Sun,” you can say it is the “just right” distance. There are so many “just right” features of our planet that we can genuinely say we are in the “Goldilocks Zone.” Some think it was all just an accident, but we believe it was God’s plan and design.
— Roland Earnst © 2019

Why Such a Large Universe? – Viewing Cosmological History

? - Viewing Cosmological HistoryWe have received some questions from readers who are perplexed by the fact that we frequently refer to a discovery or an event in outer space, millions of light-years from Earth. We have also mentioned NASA’s daily blog (apod.nasa.gov) showing gorgeous views of deep space objects many light-years away. Why such a large universe, and what does that mean to us?

It all comes down to viewing cosmological history. When we look through a telescope, we are looking at the past. If the next closest star exploded, it would be over four years before we would see it. You can see the light from the nearest major galaxy called the Andromeda, with your naked eye. It is two-million light years away, which means the light from that galaxy left there two million years ago. When we look at the sky, we are viewing cosmological history. Even the light from the Sun left there eight minutes ago. The question boils down to, Why such a large universe? Why did God create so much? It may seem presumptuous even to discuss that question. We would not attempt to speak for God who obviously can do whatever He wants to do. Nevertheless, there are some observations we can make.

First, it would be foolish to question whether the cosmos really is that large. There are a dozen different methods of measuring the distance to an object in space, and they all agree even though they are based on very different assumptions. The Doppler shift is very different from interstellar reddening which is different from cepheid variable measurements, but they all give the same answer for distances in space.

Some creationists suggest that God created the light that appears to be from a distant galaxy or star, already reaching Earth some 6000 years ago. In other words, what we see today when we look at the stars is essentially a video of something that never happened. We think we are viewing cosmological history, but we are being fooled. First of all, this explanation was invented to defend a denominational teaching that is not biblical. The Bible does not give the age of the cosmos or the Earth. No human calculation based on interpreting the Hebrew words in the Bible can stand up under examination.

However, the main problem with saying that God is trying to fool us is that such an explanation degrades God. From Genesis 1:1 to Revelation 22 the Bible repeats over and over that God is Truth. God does not lie, He does not mislead, and He does not misrepresent. James 1:13 says it well: “Let no man say when he is tempted, I am tempted of God, for God cannot be tempted with evil, neither does He tempt any man.” Faking an event in space that never happened so that humans could be fooled by it, would certainly be a deliberate effort to tempt honest, seeking humans into believing something that is wrong.

So why such a large universe? Why are we able to view the cosmological history of stars forming and dying? Why do we see billions of other galaxies beyond our Milky Way Galaxy? There may be multiple reasons known only to God. The ancient psalmist stated it well: “The Heavens declare the glory of God and the firmament shows His handiwork” (Psalms 19:1). The writer of Proverbs in chapter 8 has wisdom saying: “The Lord possessed me in the beginning of His way, before His works of old. I was set up from everlasting, from the beginning, before the Earth ever was…” (verse22-23). These statements and many more like them are not just expressions of ancient people. Here we are more than 2,000 years after Christ, and we are still trying to understand what electric charge is and what causes gravity. Moses couldn’t even see most of what modern science is investigating.

I would suggest that God structured the massive size of the cosmos and gave us the ability to watch matter being altered to produce stars and new planets so we could see His power and wisdom. Romans 1:20 rings true as we admire the work of scientists who help us understand that “the invisible things of Him from the creation of the world are clearly seen, being understood by the things that are made….” Asking why such a large universe leads us to say, “I will praise you, Lord, for I (and the cosmos) am fearfully and wonderfully made: marvelous are your works” (Psalms 139:14).
— John N. Clayton © 2019

Exoplanets and TESS

Exoplanets and TESS
Data is coming in from the Transiting Exoplanet Survey Satellite, known as TESS for short. It is the most powerful telescope ever deployed to look for planets orbiting other stars. Over two years, TESS can cover all 360 degrees of sky visible from Earth’s orbit. Our previous satellite called Kepler could only scan a small segment of the sky. Already Tess has identified over 300 probable exoplanets including one named HD 21749b which has the lowest known temperature for a planet orbiting a bright nearby star. (“Nearby” being 53 light-years away.)

The problem with this is that what astronomers consider “cool” is not cool from our standpoint. The surface temperature of HD 21749b is 150 degrees Celsius, which is way too hot for liquid water. (Water boils at 100 degrees Celsius.) A year on that planet equals 36 Earth days as it makes a complete orbit around its star. Most of the other exoplanets found at this time are vastly hotter than HD 21749b.

Astronomers have found other planetary systems, but they again have properties that would preclude any kind of life. Some of them have a planetary density equal to that of pure water. Some have orbits that are highly eccentric. Pi Mensae b, for example, has an orbit that varies widely. Its closest distance to its star approximately equals the distance from Earth to our Sun. The longest distance is similar to Jupiter’s distance from the Sun.

All of this continues to tell us that Earth is a unique planet orbiting a unique star. It is possible that those stars with exoplanets are undergoing an evolutionary process that could result in Earth-like planets billions of years from now. As we study them, we are learning more and more about what God did to create the “heaven and the earth.” God’s power and design become more amazing to us as we learn more about the universe. The more we learn, the more we see what Frank C. Baxter, who hosted the old Bell System Science TV Series, called “the wonder-working hand that has gone before us.”
–John N. Clayton © 2019

If you would like the nostalgia of watching Frank Baxter in the Bell System Science Series click HERE or HERE.

Another Blood Moon

Another Blood Moon
This past Sunday night the Western Hemisphere experienced another blood moon. We often hear the phrase “blood moon” applied to total lunar eclipses. That’s because the Moon takes on an orange or red glow when the eclipse becomes total. It has nothing to do with blood and nothing to do with Bible prophecy. Lunar eclipses are natural phenomena which occur when the Sun, Moon, and Earth are in perfect alignment. Earth’s shadow falls across the Moon and gives it an eerie, orange glow.

I took this picture at about midnight local time when the temperature was hovering close to zero degrees Fahrenheit. Because of the cold, I didn’t get a good focus and didn’t stay outside very long. Numerous other people took better photos and posted them on the web. They all look similar since we were all seeing the same view. Our Moon always keeps the same face toward us. Some people refer to the back side of the Moon as “the dark side of the Moon.” However, there is no dark side. The Sun shines on the back side each time the monthly “new moon” occurs. The Moon is in tidal lock with Earth keeping the same side facing us year-round.

For those of us who live in North America, this will be the last total lunar eclipse for a while. We will not see another blood moon until May 16, 2022. (Asia, Australia, and the Pacific will see another blood moon on May 26, 2021.) Perhaps this will give us a little break from those who try to convince us that lunar eclipses are a prophetic sign. The only sign we see in total lunar eclipses is that the solar system God created is still working in the way He designed it to work. Days, months, seasons, and years (Genesis 1:14) continue as they will until God decides it is time to bring this present world to a close. And nobody knows when that will be.

Last July we posted an explanation of why the red color and what causes lunar eclipses. We encourage you to read that post by clicking HERE.
–Roland Earnst © 2019

Martian Meteorite

Martian Meteorite
The picture shows a slice of a Martian meteorite. It landed in Morocco sometime in the past and was found there in 2011. On the edges, it shows evidence of the extreme heat of entry into Earth’s atmosphere.

How do we know that this piece of rock came from Mars? The Viking Landers analyzed the chemical composition of surface rocks on Mars, and the Mars Curiosity Rover examined the Martian atmosphere and argon level. Based on a chemical analysis of the element and isotope composition out of 61,000 meteorites found on Earth more than 130 give evidence of originating on the red planet. Their chemistry matches the Mars profile.

How did these meteorites get from Mars to Earth? They were dislodged by an impact of an asteroid on Mars which sent rocks flying out with enough force to escape the gravity of Mars. The surface gravity of Mars is only 38% of Earth’s gravity. After traveling through space, they were eventually pulled in by Earth’s gravity.

Some scientists have suggested that they detected evidence of organic (life) material in some Martian rocks. News media have been quick to attempt to say that this proves life existed on Mars in the past. Some even suggested that perhaps life came to Earth from another planet. However, further studies have disputed the organic origins or indicated that the organic evidence was actually picked up on Earth.

We have said before that the existence of life anywhere else in our galaxy is doubtful. At the same time, we have said that life elsewhere in the universe would not disprove the existence of God. We believe that God has the ability to create life anywhere He wants to, and He would not have to tell us about it. A Martian meteorite can only tell us that physics and gravity can do interesting things.
–Roland Earnst © 2019

Comets and Cats

Comets and Cats
More than five years ago there was an event that reminded us of a comparison of comets and cats. The media proclaimed comet ISON “the comet of the century.” Experts predicted that it would outshine the full moon. Some said that it would be visible in daylight. Astronomy magazine predicted that it could “become the brightest comet ever seen by anyone now alive.” Excitement was in the air as people waited to see this remarkable comet in the fall of 2013. What happened to it?

Comets have been described as dirty snowballs in space. They consist of water ice, other frozen gasses, and rocks orbiting through the solar system. When they pass near the Sun, the solar radiation vaporizes the solids, and the vapor reflects the sunlight creating a visible ball called a coma. The solar wind causes the appearance of a tail pointing away from the Sun.

The comet that brought such excitement was named ISON after the International Scientific Optical Network based in Russia that initially discovered it. Because its perihelion (closest passage to the Sun) was going to be only 1.8 million kilometers in November of 2013, astronomers expected it to be a rare and “dazzling” sight. However, as the comet came close to the Sun, it disintegrated. What was left instead of being “fifteen times brighter than the full moon” was almost, or entirely, invisible to the naked eye. Star-gazers were disappointed.

Famed comet hunter David Levy made the statement: “Comets are like cats. They have tails, and they do precisely what they want.” Yes, comets and cats are unpredictable. However, one thing we know is that the design of our solar system makes it unlikely that one will collide with Earth. What the Sun doesn’t stop, the “comet sweeper” giant outer planets will—especially Jupiter which captured one of the comets that David Levy discovered. Although Levy said that comets do what they want, it might be more accurate to say that comets do what God wants.
–Roland Earnst ©2019

Gravity Force and Life

Gravity Force and Life
Four fundamental forces impact our lives: electromagnetic force, strong and weak nuclear forces, and gravity force. We couldn’t live without them. More than that, we couldn’t live without them being exactly what they are and carefully balanced against each other.

Gravity is the weakest by far. For example, the strong nuclear force is 10 to the 38th power stronger than gravity. That is one followed by 38 zeroes. That strong nuclear force holds the nucleus of atoms together, but it acts over very short distances within the atom. The gravity force acts on larger objects over much greater distances.

If gravity were as strong as any of the other three forces, it would crush you and everything else as well! Because gravity is relatively weak, you can stand and walk. But it’s strong enough that you can also jump without flying off into space. Gravity holds our planet together. It also holds Earth in orbit around the Sun at the right distance to allow life to exist. Gravity keeps our Moon in orbit around Earth, and the Moon’s gravity stabilizes Earth’s rotation and causes the tides which clean our ocean shores.

Gravity is also a major force in our weather, causing air masses to move as their density changes. A stronger force of gravity would create strong and destructive winds. Gravity even makes plants grow upward no matter which direction you place the seed in the ground.

As matter moves around in the cosmos, it’s attracted to other matter by gravity. Gravity formed the stars and planets. Planets are spherical because gravity force pulls them into that shape. It is also the gravity force that pulls hydrogen molecules together to form stars. When the hydrogen molecules reach enough mass, the gravity force squeezes them tightly enough to cause nuclear fusion. The fusion of hydrogen atoms turns them into the essential heavier elements that make up planets and our bodies.

The gravity force is just right to make the universe, stars, planets, and life possible. If it had been slightly more or less, none of these things would exist. We think the precision of the forces of nature is not an accident, but the design of a wise God.
–Roland Earnst © 2019