Vastness of Space

Vastness of Space and the Big Dipper

One of the struggles we all have in dealing with the creation of the cosmos is understanding the vastness of space. When someone tries to give a naturalistic explanation for Earth and its abundance of life, they assume that the variables necessary for the creation of life and the conditions required for life to exist have just happened naturally. Because of the number of stars and planets, they assume that the creation can be a product of blind opportunistic chance.

In 1961 Frank Drake (a founder of SETI) presented what is known as the Drake equation. It involves multiplying seven variables that are necessary for creating a planet with intelligent life by the odds of each of those variables happening by chance alone. Let’s say the odds of having one of Drake’s seven variables are 1 in a million. Those promoting chance explanations of the creation would say that since there are 100 billion stars in the galaxy in which we live, the odds are reasonable for the creation to happen by chance.

There are many problems with this equation and the chosen variables. One statistical problem is that you can’t just have one variable which is isolated from all the other variables. If there are seven variables, then they all have to be accomplished at the same time in the same place. You can’t have variable one at one place at one time, and variable two at a different place and at a different time.

We don’t seem to comprehend the vastness of space, and how isolated stars are from one another. An excellent example of this is the asterism we call the Big Dipper. Seven stars make up the Big Dipper. When seen from Earth, they seem to be close together. The fact is that the stars are nowhere near each other. Mizar, the second star from the end of the handle is 78 light years away from Earth. (A light year is how far light goes in a year – roughly 588 quadrillion miles.) Dubhe, the star at the top edge of the bowl of the Big Dipper is 124 light years away. Merak which with Dubhe makes up the pointer stars of the Big Dipper is 79 light years away from Earth and 45 million light-years from Dubhe.

The size of the cosmos is incredible, but that size does not make chance explanations of the creation accurate. Having the right size planet going around a star that is a red giant would not support life. If you had the right size planet going around a spectral G-2 star (like our Sun), it would not support life if it were located at the core or in the equatorial plane of the galaxy. All variables have to work together at the same time and place, and that is unlikely considering the vastness of space.

When wisdom speaks in Proverbs 8:22-23 she says, “The Lord possessed me in the beginning of His way, before His works of old. I was set up from everlasting, from the beginning, before the Earth was.” The vastness of space isolates us from the destructive forces that exist throughout the cosmos. It also reinforces the statement of Romans 1:20 which says “we can know there is a God through the things He has made.”

–John N. Clayton © 2019

Exoplanets and TESS

Exoplanets and TESS
Data is coming in from the Transiting Exoplanet Survey Satellite, known as TESS for short. It is the most powerful telescope ever deployed to look for planets orbiting other stars. Over two years, TESS can cover all 360 degrees of sky visible from Earth’s orbit. Our previous satellite called Kepler could only scan a small segment of the sky. Already Tess has identified over 300 probable exoplanets including one named HD 21749b which has the lowest known temperature for a planet orbiting a bright nearby star. (“Nearby” being 53 light-years away.)

The problem with this is that what astronomers consider “cool” is not cool from our standpoint. The surface temperature of HD 21749b is 150 degrees Celsius, which is way too hot for liquid water. (Water boils at 100 degrees Celsius.) A year on that planet equals 36 Earth days as it makes a complete orbit around its star. Most of the other exoplanets found at this time are vastly hotter than HD 21749b.

Astronomers have found other planetary systems, but they again have properties that would preclude any kind of life. Some of them have a planetary density equal to that of pure water. Some have orbits that are highly eccentric. Pi Mensae b, for example, has an orbit that varies widely. Its closest distance to its star approximately equals the distance from Earth to our Sun. The longest distance is similar to Jupiter’s distance from the Sun.

All of this continues to tell us that Earth is a unique planet orbiting a unique star. It is possible that those stars with exoplanets are undergoing an evolutionary process that could result in Earth-like planets billions of years from now. As we study them, we are learning more and more about what God did to create the “heaven and the earth.” God’s power and design become more amazing to us as we learn more about the universe. The more we learn, the more we see what Frank C. Baxter, who hosted the old Bell System Science TV Series, called “the wonder-working hand that has gone before us.”
–John N. Clayton © 2019

If you would like the nostalgia of watching Frank Baxter in the Bell System Science Series click HERE or HERE.

Martian Meteorite

Martian Meteorite
The picture shows a slice of a Martian meteorite. It landed in Morocco sometime in the past and was found there in 2011. On the edges, it shows evidence of the extreme heat of entry into Earth’s atmosphere.

How do we know that this piece of rock came from Mars? The Viking Landers analyzed the chemical composition of surface rocks on Mars, and the Mars Curiosity Rover examined the Martian atmosphere and argon level. Based on a chemical analysis of the element and isotope composition out of 61,000 meteorites found on Earth more than 130 give evidence of originating on the red planet. Their chemistry matches the Mars profile.

How did these meteorites get from Mars to Earth? They were dislodged by an impact of an asteroid on Mars which sent rocks flying out with enough force to escape the gravity of Mars. The surface gravity of Mars is only 38% of Earth’s gravity. After traveling through space, they were eventually pulled in by Earth’s gravity.

Some scientists have suggested that they detected evidence of organic (life) material in some Martian rocks. News media have been quick to attempt to say that this proves life existed on Mars in the past. Some even suggested that perhaps life came to Earth from another planet. However, further studies have disputed the organic origins or indicated that the organic evidence was actually picked up on Earth.

We have said before that the existence of life anywhere else in our galaxy is doubtful. At the same time, we have said that life elsewhere in the universe would not disprove the existence of God. We believe that God has the ability to create life anywhere He wants to, and He would not have to tell us about it. A Martian meteorite can only tell us that physics and gravity can do interesting things.
–Roland Earnst © 2019

Gravity Force and Life

Gravity Force and Life
Four fundamental forces impact our lives: electromagnetic force, strong and weak nuclear forces, and gravity force. We couldn’t live without them. More than that, we couldn’t live without them being exactly what they are and carefully balanced against each other.

Gravity is the weakest by far. For example, the strong nuclear force is 10 to the 38th power stronger than gravity. That is one followed by 38 zeroes. That strong nuclear force holds the nucleus of atoms together, but it acts over very short distances within the atom. The gravity force acts on larger objects over much greater distances.

If gravity were as strong as any of the other three forces, it would crush you and everything else as well! Because gravity is relatively weak, you can stand and walk. But it’s strong enough that you can also jump without flying off into space. Gravity holds our planet together. It also holds Earth in orbit around the Sun at the right distance to allow life to exist. Gravity keeps our Moon in orbit around Earth, and the Moon’s gravity stabilizes Earth’s rotation and causes the tides which clean our ocean shores.

Gravity is also a major force in our weather, causing air masses to move as their density changes. A stronger force of gravity would create strong and destructive winds. Gravity even makes plants grow upward no matter which direction you place the seed in the ground.

As matter moves around in the cosmos, it’s attracted to other matter by gravity. Gravity formed the stars and planets. Planets are spherical because gravity force pulls them into that shape. It is also the gravity force that pulls hydrogen molecules together to form stars. When the hydrogen molecules reach enough mass, the gravity force squeezes them tightly enough to cause nuclear fusion. The fusion of hydrogen atoms turns them into the essential heavier elements that make up planets and our bodies.

The gravity force is just right to make the universe, stars, planets, and life possible. If it had been slightly more or less, none of these things would exist. We think the precision of the forces of nature is not an accident, but the design of a wise God.
–Roland Earnst © 2019

Cosmic Coincidence and the Heliosphere

Cosmic Coincidence and the Heliosphere
A cosmic coincidence took place on November 5, 2018. It had to do with our Sun and two probes that NASA sent into space.

To the average person, the solar system refers to our Sun and the eight (or nine) orbiting planets. However, between Mars and Jupiter there are asteroids and beyond the planets there dwarf planets and smaller bodies called planetesimals. So where is the edge of the solar system?

A bubble surrounds the solar system which scientists call the heliosphere. The Sun sends out charged plasma particles called the solar wind. Earth’s magnetic field protects us from most harmful effects of the solar wind, but we can see the effect of that “wind” as it ionizes molecules in the upper atmosphere creating the aurora we call the northern and southern lights. There is a limit to how far the solar wind reaches, and that is the outer edge of the heliosphere bubble. NASA’s Voyager 2 reached it on November 5.

Also on November 5, NASA’s Parker Solar Probe reached the inner edge of the heliosphere by flying toward the Sun. The fact that both probes arrived at the extreme boundaries of the heliosphere at the same time was not and could not be planned by the scientists at NASA. We would have to call it a cosmic coincidence.

NASA launched Voyager 2 forty-one years earlier in 1977. On its journey out of the solar system, it flew past and took pictures of all four gas giant planets (Jupiter, Saturn, Uranus, and Neptune). In late August of 2018, its plasma detectors, called Faraday cups, began to indicate that it was reaching the edge of the heliosphere. After 310 days of crossing that boundary, scientists determined that it passed out of the solar wind on November 5. Earth is about 93 million miles (150 million km ) from the Sun. Voyager 2 had reached 120 times Earth’s distance from the Sun.

Meanwhile, NASA launched the Parker Solar Probe on August 12, 2018, and it traveled toward the Sun. In three months it arrived at the Sun’s outer atmosphere called the corona. Parker’s job is to investigate how the solar wind originates. Scientists want to know how the Sun’s superheated atmosphere generates the solar wind plasma and blasts it into space at speeds of a million-plus miles per hour.

So, the cosmic coincidence is that two NASA probes launched 41 years apart arrived at almost the same time at the outer and inner limits of the heliosphere. Their mission is to give us new information about our solar system. Their arrival at the same time was a pure cosmic coincidence. The marvelous system they are investigating and that supports life on this planet is certainly not a coincidence. It shows the power and wisdom of the Creator.
–Roland Earnst © 2019

How Many Moons Are Enough?

How Many Moons Are Enough?
When it comes to moons, it seems that Earth got cheated. We have only one moon while Mars has two. Neptune has fourteen moons. Uranus has twenty-seven. Saturn not only has rings, but it also has sixty-two moons. Lucky Jupiter has sixty-seven! To add to the embarrassment, puny little Pluto, which is no longer considered a planet, has five times as many moons as Earth has! The only bragging point we have is that we can say we have more moons than Mercury and Venus. (They have none.) So how many moons are enough?

Actually, one works very nicely. Our single moon is critical to the existence of life on Earth. It’s because of the moon that Earth has a stable tilt on its axis of 23.5 degrees. That tilt prevents temperature extremes on this planet. With no inclination, the area of the Equator would be extremely hot and the poles extremely cold and dark all year. With a greater tilt, seasonal weather changes would be extreme all over the planet. Because of the angle of the inclination, we have proper seasons, and the air gets mixed to temper the weather extremes.

Our moon has the right mass at the right distance to keep Earth’s tilt stable. The moon plays several crucial roles in making our planet a great place to live, but stabilizing the tilt is one that’s extremely important. So how many moons are enough? I would say that one moon of the right size and at the right distance is just right.

Oh, and those other planets with more moons — none of them are habitable. Guess who has bragging rights now? Thank God that he gave us a just-right moon, and we don’t need any more. We see evidence of God’s design in every detail of our planet.
–Roland Earnst © 2018

Galactic Coincidences?


On a clear, moonless night, you can look up and see the Milky Way. Actually, we are in the Milky Way, a spiral galaxy of 200 billion stars one of which is our Sun. We are located in a spiral arm of that galaxy 26,000 light-years from its center. Our location seems to indicate many galactic coincidences.

At the center of the Milky Way (and perhaps all galaxies), there’s a black hole sending out lethal radiation to a distance of 20,000 light-years. Farther out than 26,000 light-years from the center, heavy elements that are vital to our existence and survival are scarce. We are in what astronomers call the “galactic habitable zone.”

Spiral galaxies rotate, and we are near the co-rotation spot where our solar system moves at almost the same rate as the spiral arm we are in. If we were in precisely the co-rotation spot, we would experience gravitational “kicks” which could send us out of the habitable zone. If we were far away from the co-rotation spot, we would fall out of the arm and be subjected to deadly radiation.

In the vast majority of spiral galaxies, the habitable zone and co-rotation spot do not overlap. Most other spiral galaxies are not as stable as ours. Most galaxies are not spiral galaxies and would not have a stable location for advanced life.

Furthermore, galaxies exist in clusters, and our cluster called the “Local Group” has fewer, smaller, and more spread-out galaxies than nearly all other clusters. Most galaxies are in dense clusters with giant or supergiant galaxies which create deadly radiation and gravitational distortion making advanced life impossible.

These are only a few of the many factors that “just happen to be” true of the place where we live. Are these just galactic coincidences? Some say it’s all accidental. We say it’s a grand design by a Master Designer. The next time you look up at the Milky Way, thank God that we are precisely where we are.
–Roland Earnst © 2018

Stronger than Gravity

Stronger than Gravity
Gravity controls the universe — at least on a large scale. Obviously, gravity keeps you and your possessions from floating away into space. Gravity also holds planets and stars together. It holds the Moon in orbit around the Earth and all of the planets in orbit around the Sun. Gravity holds the galaxies together. But other forces are stronger than gravity.

Four interactions make the universe work: the weak and strong nuclear forces, electromagnetism, and gravity. Gravity is by far the weakest of those forces. The weak and strong nuclear forces are limited to a very short range within the atom. Only the electromagnetic force and gravity reach out to the vast universe. Since the electromagnetic force is so much stronger than gravity, why does gravity control the universe?

Everything is made of atoms and atoms contain electrons and protons. Electrons have a negative charge, and protons have an equal and opposite positive charge. Electromagnetism causes opposite charges to attract and like charges to repel each other. Gravity, of course, pulls anything with mass together.

The reason electromagnetism does not overpower the much weaker force of gravity is a delicate balance between electrons and protons. For each electron in the universe, there is a proton, so the plus and minus electrical forces cancel each other, creating electrical neutrality. Without that balance, we could not exist.

The balance between electrons and protons is so delicate that if you were building a universe and accidentally put in one extra electron for each trillion trillion trillion electron/proton pairs (that’s one followed by 36 zeroes), it would be catastrophic. The electrical repulsion between those negatively-charged electrons would overpower the gravitational force. The result would be that gravity could not pull any mass together. If gravity could not pull masses together, there would be no planets, no stars, no galaxies. Electromagnetic repulsion would create a universe of dispersed particles and nothing else.

Each of the other forces is stronger than gravity. The weak and strong nuclear forces are confined to short distances within the atom, and the electromagnetic force is carefully balanced. Is it possible that this precision is merely an accident? Or do we see evidence of system design? We think this is one more example of fine-tuning in the universe which gives evidence of a Designer.
–Roland Earnst © 2018

Average Star? – No Way!

Average Star? – No Way!
In the past, astronomers thought that the Sun was just an average star. After all, there are hotter stars, and there are colder stars. There are larger stars, and there are smaller stars than the Sun. If you plot the luminosity of all visible stars, the Sun falls near the middle of the system.

However, in recent years, it has become clear that the Sun is not an average star, but an extraordinary star. Without specific properties of our “oddball” star, life on Earth would not be possible. Here are just four of the many unique features of the Sun:

1-Most of the stars in the universe are binary or trinary stars. That means they are actually two, three, or even more stars orbiting each other although they appear to be a single star. A life-supporting planet could not survive that arrangement.

2-The Sun is relatively stable while most stars have much more violent flares that send out lethal radiation.

3-The Sun produces light in the proper wavelength to sustain life. Sunlight has the right wavelengths for photosynthesis and does not have the high-energy wavelengths of other stars.

4-Our Sun also has the right temperature and size to allow a large solar habitable zone where Earth can have an elliptical orbit and still support life.

There are many more “special” features that make our Sun more than an average star. If we didn’t have an above average star, we wouldn’t be here. We see our special star as another evidence that the Sun and our solar system is the work of a Master Designer.
–Roland Earnst © 2018

Moon Mass and Life on Earth

Moon Mass and Life on Earth
Our Moon is different from any other moon in our solar system. And as far as we know, it’s different from any other moon orbiting any other planet in our galaxy. The difference has to do with the Moon mass.

No other planet has a moon with a mass that is so large compared to the mass of the planet. While other planets have multiple moons, our single Moon is large enough in relation to our planet that it stabilizes Earth’s rotational tilt at 23.5 degrees in relation to our orbit around the Sun. No other planet in our solar system has such a stable rotation axis tilt. The stable axis allows us to have stable and reliable seasons.

Seasonal changes distribute the Sun’s energy over Earth’s surface allowing plants to grow and food to be produced over a large area. Without the seasons, much of the Earth would be too cold, and some areas would be too hot for advanced life. The Moon has enough mass at the right distance from Earth to make advanced life possible on this planet.

In fact, the Moon has almost too much mass. If the Moon had two percent more mass, it would destabilize the Earth’s tilt. Is there a reason for the Moon to be more massive that it needs to be to stabilize the tilt? Yes, there is. The mass of the Moon creates a pull on the Earth known as tidal friction. That force creates the ocean’s tides which refresh the coastlines.

There is another reason for the large Moon mass. It also slows the Earth’s rotation. In the early Earth, days were shorter. The Moon has put the brakes on our planet’s rotation slowing it to a 24-hour day. Slowing the rotation has affected Earth’s weather, reducing temperature extremes and distributing rainfall more evenly around the Earth.

These are some of the many reasons we need the Moon at its exact size and location. Is it merely another coincidence that the Moon has just the right mass and distance from Earth? No, we believe God planned it that way.
–Roland Earnst © 2018