Reality of Space Travel

Reality of Space Travel and Little Green Men

Although space-travel movies are exciting and fun, they are not very realistic. Einstein’s theory of special relativity says that it’s impossible to travel at the speed of light. There is overwhelming proof that he was right. That fact has an impact on the reality of space travel.

Astronomer Dr. Hugh Ross wrote an excellent book entitled Why the Universe is the Way It Is. In this book, he states that due to the laws of physics the top speed of a spaceship would be limited to about one percent of the speed of light, or 6.7 million miles (10.8 million km) per hour. Based on that, he says that for aliens to travel from any other planetary system where intelligent beings could possibly exist would take at least 25,000 years! (Remember that it will take nine months just to travel to Mars, our neighboring planet.)

So when you watch a two-hour movie in which people travel from one planetary system to another at hyper-light-speed, remember that it’s only Hollywood. The reality of space travel is not what we see in the movies. We live in a universe designed by a Creator who gave us a special place with everything we need to live. Is there any kind of life, not just intelligent life, anywhere else in this vast universe? We don’t know, but the chances of meeting intelligent beings from another planet are very, very slim. That’s the reality of space travel.

By the way, my picture is poking a little fun at a statement made by the well-known atheist biologist Richard Dawkins in his book The Selfish Gene. He begins chapter 1 by stating, “Intelligent life on a planet comes of age when it first works out the reason for its own existence. If superior creatures from space ever visit earth, the first question they will ask, in order to assess the level of our civilization, is: ‘Have they discovered evolution yet?’”

So does discovering evolution indicate advanced civilization and the level of our intelligence? More importantly, does evolution explain the reason for our existence? Personally, I think the reason for our existence is not found in evolution, but begins in Genesis chapter 1 and is developed in the rest of the Bible.

— Roland Earnst © 2019

Martian Meteorite

Martian Meteorite
The picture shows a slice of a Martian meteorite. It landed in Morocco sometime in the past and was found there in 2011. On the edges, it shows evidence of the extreme heat of entry into Earth’s atmosphere.

How do we know that this piece of rock came from Mars? The Viking Landers analyzed the chemical composition of surface rocks on Mars, and the Mars Curiosity Rover examined the Martian atmosphere and argon level. Based on a chemical analysis of the element and isotope composition out of 61,000 meteorites found on Earth more than 130 give evidence of originating on the red planet. Their chemistry matches the Mars profile.

How did these meteorites get from Mars to Earth? They were dislodged by an impact of an asteroid on Mars which sent rocks flying out with enough force to escape the gravity of Mars. The surface gravity of Mars is only 38% of Earth’s gravity. After traveling through space, they were eventually pulled in by Earth’s gravity.

Some scientists have suggested that they detected evidence of organic (life) material in some Martian rocks. News media have been quick to attempt to say that this proves life existed on Mars in the past. Some even suggested that perhaps life came to Earth from another planet. However, further studies have disputed the organic origins or indicated that the organic evidence was actually picked up on Earth.

We have said before that the existence of life anywhere else in our galaxy is doubtful. At the same time, we have said that life elsewhere in the universe would not disprove the existence of God. We believe that God has the ability to create life anywhere He wants to, and He would not have to tell us about it. A Martian meteorite can only tell us that physics and gravity can do interesting things.
–Roland Earnst © 2019

How Many Moons Are Enough?

How Many Moons Are Enough?
When it comes to moons, it seems that Earth got cheated. We have only one moon while Mars has two. Neptune has fourteen moons. Uranus has twenty-seven. Saturn not only has rings, but it also has sixty-two moons. (Update- We now know that Saturn has 82 moons! Lucky Jupiter has sixty-seven! (Update- It’s now 79!) To add to the embarrassment, puny little Pluto, which is no longer considered a planet, has five times as many moons as Earth has! The only bragging point we have is that we can say we have more moons than Mercury and Venus. (They have none.) So how many moons are enough?

Actually, one works very nicely. Our single moon is critical to the existence of life on Earth. It’s because of the moon that Earth has a stable tilt on its axis of 23.5 degrees. That tilt prevents temperature extremes on this planet. With no inclination, the area of the Equator would be extremely hot and the poles extremely cold and dark all year. With a greater tilt, seasonal weather changes would be extreme all over the planet. Because of the angle of the inclination, we have proper seasons, and the air gets mixed to temper the weather extremes.

Our moon has the right mass at the right distance to keep Earth’s tilt stable. The moon plays several crucial roles in making our planet a great place to live, but stabilizing the tilt is one that’s extremely important. So how many moons are enough? I would say that one moon of the right size and at the right distance is just right.

Oh, and those other planets with more moons — none of them are habitable. Guess who has bragging rights now? Thank God that he gave us a just-right moon, and we don’t need any more. We see evidence of God’s design in every detail of our planet.
–Roland Earnst © 2018

Optimum Martian Viewing

Optimum Martian Viewing
Recently there has been much talk about Mars in the media. NASA and private firms such as Elon Musk’s SpaceX are working on plans to send people to Mars and eventually build a colony there. For the past month, a planet-wide dust storm has blocked sunlight from reaching the planet’ surface and caused NASA’s solar-powered Opportunity rover to shut down. In addition, Mars is now in “opposition” to Earth and at its closest point to us since 2003. The current position of Mars gives us optimum Martian viewing.

When astronomers say that Mars is in perihelic opposition to Earth, that means the Sun, Earth, and Mars are in a line with Earth in the middle. That makes the apparent luminosity of Mars the brightest that it is at any time. Also, it means that Mars rises each night as the Sun sets and Mars sets each morning as the Sun rises. So Mars is visible in the sky all night long, and it is two times brighter than Jupiter, which usually outshines it. In addition to Mars, Saturn, Jupiter, and Venus are also visible at this time in an east-west arc across the sky after sunset. You can distinguish Mars by its red color, and it will continue to be bright through August for the optimum Martian viewing opportunity.

On July 26, NASA announced, “It’s the beginning of the end for the planet-encircling dust storm on Mars.” However, it may be weeks or even months before the Martian atmosphere clears enough for the Opportunity to have enough sunlight to recharge its batteries and return to life. NASA hopes that the batteries will recharge before Opportunity freezes to death. The average temperature on Mars is minus 80 degrees Fahrenheit (minus 60 Celsius). That is not very hospitable to machinery, or humans.

In addition to the previous factors, Mars will be at its closest point to Earth today, July 31, 2018. It will be only 35.8 million miles (57.6 million km) away from us. Mars is at its closest point about every two years. When Mars is on the other side of the Sun, it is about 250 million miles (401 million km) away. For that reason, any mission to Mars will have to be precisely timed to reach our neighboring planet in the shortest time, but it will still take months to make the journey.

With all of the challenges of reaching and perhaps colonizing Mars, the work goes on to achieve that goal. Some, such as Elon Musk, are suggesting “terraforming” Mars. That is, modifying the climate to make it hospitable to earthlings. That would require raising the climate temperature, thickening the thin atmosphere, and having a stable supply of liquid water, among other things. Elon Musk suggested a method of doing that which involves bombing the polar ice caps with explosives. It sounds like science fiction, and a new report from two leading scientists, Bruce Jakosky of NASA and Christopher Edwards of Northern Arizona University suggest that it is. Their study published in Nature Astronomy concludes that “with current technology, we just don’t see that there are any viable options” for terraforming Mars.

What we need to remember as we consider all of this, is that God has given us a planet that has all of the right conditions for us to live on and enjoy. He has already “terraformed” it for us, and we need to protect that gift and use it wisely. In the meantime, we can enjoy the optimum Martian viewing opportunity He provided for us to see the “red planet” right now.
–Roland Earnst © 2018

Driving to Mars in a Red Convertible

Driving to Mars
On February 6 SpaceX launched a red Tesla roadster convertible owned by billionaire CEO Elon Musk in a trajectory toward Mars. The photo from an onboard camera shows the dummy driver leaving Earth and driving to Mars.

Will the car ever get there? Astronomers say that it will go into orbit around the Sun and eventually come to the vicinity of Mars. However, it will probably not come very close to the planet depending on the timing of orbits. It has no onboard thrusters to adjust its direction for driving to Mars. At any rate, it will take several months to arrive anywhere near Mars. The closest Mars ever comes to Earth is 33 million miles (54.6 million kilometers). It takes a long time to “drive” that far.

Musk has been promoting the idea of colonizing Mars. His company has developed the world’s most powerful space rocket, the Falcon Heavy Rocket, which they used to launch Musk’s car. However, Mr. Musk doesn’t seem to be doing much to solve the problems of interplanetary space travel. For humans to survive on long space flights away from the protection of Earth’s atmosphere and magnetic field, will require much more effort than launching them into space.

Earth has been designed to shield us from the deadly effects of space. Of course, the vacuum of space would be deadly to anyone not in a pressurized suit or cabin. That problem has been solved to allow astronauts to live in the International Space Station and make spacewalks. If the tires on the car were pressurized, I suspect they would have blown out by now. Another problem is food, medicine, and other supplies. Resupply launches provide for the needs of people on the ISS, but that would not be practical for people traveling to or colonizing Mars.

Perhaps the biggest challenge is cosmic radiation and debris coming from outer space. Earth’s atmosphere is designed to protect us from those things. The space station in low Earth orbit is still somewhat within the magnetic field of Earth. In outer space, the only protection is what you can take with you. Apparently, from what Elon Musk posted on Twitter, his car was headed on a dangerous trip into the asteroid belt beyond Mars.

Musk said in a news conference that the car was “just going to be out there in space for maybe millions or billions of years.” That may be doubtful. Musk admitted that SpaceX had not tested the materials of the red convertible for space endurance. The mannequin space traveler is wearing an authentic space suit, but the car is made of the usual materials. Even if the car avoids major collisions with asteroids, it will become riddled with pockmarks from micrometeorites. Leather, fabrics, plastics, and even the carbon-fiber frame will break down from exposure to unfiltered sunlight and cosmic radiation. The carbon-carbon and carbon-hydrogen bonds in those materials will break down, and the car will fall apart. At least one scientist, William Carroll, a chemist at Indiana University and an expert on plastics and organic molecules, said, it won’t last a year in space.

One more thing to note is that the radio in the car was playing David Bowie’s song “Space Oddity.” However, sound can’t travel through a vacuum, and since there is no atmosphere in space, the radio is playing the sound of silence. The battery will run down in a short time anyway. Driving to Mars is going to be a challenge, even in a well-designed spaceship. The need for power, food, protection from the elements and many other things, make us very happy to live on planet Earth. It almost seems as if Someone designed this place for us to call “home.”
–Roland Earnst © 20018

To read more about this click here and here and here and here.

Martian Global Aurora

Martian Global Aurora
On October 6 NASA’s daily space news website apod.nasa.gov contained pictures of a Martian global aurora. Because Mars has virtually no magnetic field, the radiation level goes sky high during solar storms. In the latest storm, radiation levels doubled–which would have been dangerous to life on Mars.

Earth’s magnetic field is very strong, and deflects radiation coming from the Sun. The radiation is deflected toward the poles, which is why we see the auroras near the poles. By deflecting the radiation, the magnetic field protects life on the Earth from dangerous levels. The more we learn about the cosmos, the more we see factors that make life possible on Earth. Our magnetic field is one more example of the design of our planet.

Looking for life in space is not just about whether there is water on a planet. There are a huge number of other factors that must be present. A strong magnetic field to shield from radiation is just one of those factors. Of course, an atmosphere suitable for life is also a requirement. NASA has a space probe called MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiting Mars. The purpose is to find out if Mars lost its atmosphere due to not having a strong magnetic field.

The Martian global aurora is just one more reminder of the blessing of life on planet Earth. It also indicates that life on this planet is no accident.
–John N. Clayton © 2017

Toxic Martian Cocktail

Toxic Martian Cocktail
Mars researchers have discovered a new issue in their attempts to find life on Mars—a toxic Martian cocktail.

One reason scientists believed that life might be possible on Mars was that tests from Martian soil samples show chemicals that are a potential energy source for bacteria. However, because Mars has such a thin atmosphere, ultraviolet radiation levels are very high. A Recent sampling of the Martian soil has also shown that it contains perchlorates, which are toxic to living cells. An article in Scientific Reports on Nature.com said that the UV rays combined with perchlorates as well as iron oxide and hydrogen peroxide together give what the researchers are calling a “toxic cocktail.” The bacteria Bacillus subtilis, which is often found in spacecraft and can survive extreme conditions of space, is wiped out in 30 seconds when exposed to this cocktail.

In other words, the surface soil on Mars can kill living cells. On July 6 Popular Science reported on these findings and indicated that you would have to go six feet below ground to get away from this toxic mix. Surface expressions of life on Mars are almost certainly not going to be found. Deep underground testing is the only possibility for finding life on Mars.

The mass media often oversimplifies what it takes to make life possible on a planet. This oversimplification continues to be bombarded by the facts. Just being in the zone where water can exist as a liquid, called the “habitable zone,” doesn’t qualify a planet as a dwelling place for life. The “uninhabitable zone” keeps getting larger.

The number of variables that have to be tweaked to allow life continues to grow as scientists make new discoveries. The toxic Martian cocktail is another factor that has generally been ignored. God’s creation shows the hand of a Master Engineer arranging all of the variables that make life possible to create the unique planet on which we live.
–John N. Clayton © 2017

Should We Go to Mars?

Should We Go to Mars?
Concept of Future Mars Outpost

Chances are you have seen the movie The Martian or the National Geographic TV series on Mars, with the hypothetical first colonization of the red planet. Politicians have jumped into the popular hysteria by making proposals about establishing human occupation of the planet. Some wealthy private companies are proposing to offer trips to Mars. But should we go to Mars?

There is nothing in the Bible that would attempt to restrict humans from leaving Earth. By the same token, there is no encouragement to do so. What the general public does not seem to understand is that God incorporated an incredible number of design features into the Earth for us to be able to live here. We have discussed those features over and over in our printed publications, in our Dandy Designs series, and also on our Facebook page. When you don’t have those design features available, human life becomes very tentative.

NASA has recently discovered that astronauts who flew to the moon were four times more likely to die from heart disease than those who had even the minimal protection of the International Space Station. Astronauts are also showing signs of what has been nicknamed “Space Brain.” This involves dementia and cognitive impairment. The effect of weightlessness is still being studied, but the loss of bone and muscle mass is known to be a consequence of living without gravity.

The cost of resolving all these issues is huge. Even though we will probably be able to overcome these problems in the distant future, we need to understand that God’s design of Earth is highly complex. Should we go to Mars? We may want to make sure we use our resources to solve the hunger, homelessness, and ecological issues before we venture to other worlds. 

–John N. Clayton © 2017

NASA data is available in The Week, December 23, 2016, page 27.