Magnetism and Life

Magnetism and LifeOne of the things that beginning chemistry students run into very early is the fact that magnetism plays a vital role in the way electrons and atoms work. I remember one of my favorite students who whined and complained when we talked about paired electrons and their dependence on magnetism. He said, “Why does chemistry have to be so terribly complicated? I could function very nicely without magnetism, thank you.” My response was that not only could he not function without magnetism, but he could not exist without magnetism. There is an inseparable bond between magnetism and life.

Most of us are aware of magnetism in only a vague way. We know that magnets stick things to our refrigerators, and we are familiar with magnetic compasses. We have some awareness that the Earth has a magnetic field, although we don’t know how or why. The simple fact is that, without magnetism, we would not exist. In addition to that, much of what allows us to live as we do depends on magnetism. Our appliances and electronic devices work because of magnets and magnetic principles. In fact, magnetism generates the electricity we use.

Earth’s magnetism and life are connected in a way that most people don’t understand. As charged particles come toward us from the Sun and other objects in space, Earth’s magnetic field deflects them away. Without this protective shield, radiation would be so high on the Earth’s surface that life would have a very difficult time surviving. Also, magnetism is an active force in living things. Many animals migrate from one geographic area to another using Earth’s magnetic field as a guide. We have even found that tiny magnets inside our bodies can be used to see things that are invisible to X-rays and ultrasound. Magnetic resonance imaging (MRI) is an important tool available to modem science.

The reason magnetism works is because of the design of the electron. Electrons possess a magnetic field. Each electron has a north and a south magnetic pole caused by the electron’s spin. We don’t know exactly how this works, but we do know that for chemical reactions to take place, electrons must have their magnetic field in a specific alignment. This magnetic property of electrons controls all chemical reactions and makes a variety of other chemical processes possible. If an electron had all of its electrons paired up magnetically, all of its energy fields filling the atom would be totally stable. Elements that have that arrangement are called inert, and examples are helium, neon, argon, krypton, and xenon.

In some materials, there are large numbers of unpaired electrons. The energy of unpaired electrons allows these elements to be very active, and we use those materials for a variety of special purposes. Atoms strive to have all magnetic fields balanced and closed, and that is the basis of modem chemistry. When electrons flow through a wire, their alignment causes their magnetic fields to add and grow. That is the basis of the electromagnet and the Earth’s magnetic field which protects us.

The design of the atom and the way magnetism is built into elements allows the existence of matter, life, and the protective system that sustains life on Earth. The connection between magnetism and life and the complexity of this system tells us that chance is not the guiding mechanism. There are intelligence and purpose in the system that makes life possible. The design of the cosmos that functions year after year speaks eloquently of the wisdom and power of its Creator.
— John N. Clayton © 2019

How the Elements Were Created

How the Elements Were CreatedScience has made significant progress in understanding many things about the universe and our planet and the life on it. However, there are many, many things that we have not yet begun to understand. There are also many things we think we understand, but we are still working on better understandings. One question involves how the elements were created.

At the time of the cosmic creation event (widely called the “big bang”), there were atoms with one proton and one electron and some with twice that many. We call simplest element hydrogen, and two hydrogen atoms combine to form helium in the process of nuclear fusion. More and more fusion took place and still is happening in our Sun and other stars. The process requires intense heat and pressure to fuse the atomic nuclei into a heavier atom.

In stars much more massive than our Sun, heavier elements up to iron can are being formed by fusing more and more atoms together. When you go beyond iron, and all the way up to uranium, even the biggest, brightest, and hottest stars can’t squeeze those atoms together. Scientists believe that the heavier elements are created in exploding stars known as supernovae. When they explode, the theory goes, ripples of turbulence form as the supernovae toss their stellar material into the void of the universe. The forces in that turbulence press more and more atoms together to make the heavier elements. As those atomic elements fly off into space, gravity pulls them into lumps which eventually become planets, such as the one on which we live.

A problem with that explanation is that when the atoms are blasted from the supernovae, they are all traveling in the same direction at perhaps the same speed. How can that produce enough force and heat to fuse them together? An alternate explanation is that the explosion within the supernova is not symmetrical, creating areas of greater density. Ultradense and ultrahot regions concentrated in small areas of the exploding mass perhaps give a better explanation of how the elements were created. (See a paper on that published in the Proceedings of the National Academy of Sciences of the United States.)

Carbon is the basic building block of all living cells. Nitrogen and oxygen, which are the next steps above carbon, bond with it along with other atoms to form living molecules. A little higher on the atomic scale are sodium, magnesium, phosphorus, and other elements which are essential to life. Iron, nickel, copper, and other metals are in molecules within our bodies, and we use them in pure form to build our homes, cars, and electronics. The heavier radioactive elements such as uranium deep within the Earth generate the heat that creates a molten iron core that generates a magnetic field which surrounds and protects us. This is a very simple explanation of a very complex system that makes it possible for us to be here.

Science is only beginning to understand how the elements were created and how they are continuing to be created. How did this amazing, complex system come into being with the precision that put life on this planet? We could declare a god-of-the-gaps to say that we don’t understand it and therefore, God did it. It is much better for us to learn HOW God did it. As we begin to see the wisdom required to put this incredibly complex universe together, we become more in awe of the Creator. We don’t have a god-of-the-gaps who “zaps” things into existence like a magician. Our God is an engineer craftsman who creates complexity and beauty that leaves us without excuse. (See Romans 1:20.)
— Roland Earnst © 2019

How The Sun Works

How The Sun WorksWe depend on the Sun every day to generate the energy that makes life on Earth possible, but have you considered how the Sun works?

The key to the Sun’s energy-supplying ability is a delicate balance between gravity and electromagnetism. Gravity curves space and pulls together all objects that have mass. The greater the mass, the greater the force of gravity. Right now gravity is pulling us toward the center of the Earth, but we are being held in place by the strength of the Earth’s crust and whatever floors or objects we have below us. The strength of the surfaces supporting us comes from electromagnetic forces between electrons and the protons in the nucleus of atoms. Those forces bond atoms of elements to each other forming compounds.

Since the Sun’s mass is more than a million times that of Earth, its gravity is more than a million times as great. The tremendous force in the core of the Sun overcomes the electromagnetic force and squeezes atoms of hydrogen tightly together igniting a thermonuclear reaction producing helium.

The creation of helium atoms releases high energy gamma-ray photons. If those gamma rays reached Earth, they would kill us. But the vast majority of them are transformed before they leave the surface of the Sun. On the way from the core to the surface they bounce off protons and electrons heating the hydrogen gas in the outer portion of the Sun. That heating increases the gas pressure enough to overcome the pull of gravity. Otherwise, the Sun would collapse on itself.

The bouncing of those gamma rays slows them so much that it takes hundreds of thousands of years for them to reach the Sun’s surface. If they could travel in a straight line, it would take only seconds, but they would emerge as deadly gamma rays that would reach the Earth in eight minutes, destroying all life. By the time those sterilizing gamma-ray photons reach the Sun’s surface, their energy has mainly been reduced to life-giving optical photons. There are still some dangerous rays that reach the Earth, but our atmosphere takes care of most of those.

That is a very simplified description of how the Sun works. Our Sun is a special star that provides the energy needed to sustain life on Earth without the high-energy rays that would destroy it. As you enjoy a beautiful sunset, you don’t have to know how the Sun works, but the Creator did. This finely-tuned system shows evidence of design by a Master Engineer, not a chance accident.
— Roland Earnst © 2019