Anniversary of a Star Explosion – SN 1987A

Anniversary of a Star Explosion – SN 1987A

Today is the thirty-fourth anniversary of a significant astronomical event. It’s the anniversary of a star explosion. On February 23, 1987, astronomers and other observers on Earth witnessed the explosion of a star with a mass about twenty times that of our Sun. They called it supernova SN 1987A.

The explosion was bright enough to see with the naked eye. While Earth observers saw it in 1987, the explosion happened long before that. Since the star was located in the Large Magellanic Cloud, a galaxy 160,000 light-years from Earth, we witnessed an event that occurred 160,000 years in the past.

There have been other supernovas, but SN 1987A was the brightest supernova observed since the telescope’s invention. It was also the brightest since Chinese astronomers observed a star exploding in A.D. 1054. For the past thirty-four years, astronomers have studied the ring of fire as it expands outward from that explosion. The picture showing the remnant of the explosion is a composite image from 2014. It combines visible light from the NASA/ESA Hubble Space Telescope and x-rays from NASA’s Chandra X-ray Observatory.

What do we learn from our study of the stars, supernovas, nebulae, and everything else we can see in the universe? We learn the processes God used to create the universe, our galaxy, and our planet. As we examine supernovas, we understand that God used them to forge the heavier elements that make up our planet and our bodies.

Studying the creation process also shows us the incredible precision required to make the universe possible and create life on this planet. On this thirty-fourth anniversary of a star explosion, we are reminded of the words of an ancient psalm, “The heavens declare the glory of God” (Psalms 19:1).

— Roland Earnst © 2021

Making Molecules on Jupiter

Making Molecules on Jupiter

In recent years we have come to understand how God formed many of the elements that make up our world and our bodies. We watch stars producing new elements, and we realize that this system was designed by God to take the hydrogen produced in the beginning and continually make heavier elements by thermonuclear fusion. It is incredible to witness the power and design in a nova or supernova and to understand that this is God’s forge to make new elements. Now we have another picture of a design God has used for making molecules.

Molecules are combinations of atoms put together to produce a compound. Simple compounds like water and methane are difficult enough to produce. The huge molecules, such as amino acids that make up living materials, require a particular environment to form. Many of them have been found in space debris, but their origins are not clear.

The latest NASA report on Jupiter has given us some new understanding of making molecules. NASA’s robotic Juno spacecraft orbits only 15,000 kilometers above Jupiter’s cloud tops. Using new data from this spacecraft, astronomers have announced that Jupiter is apparently mostly liquid. It is not a ball of rock with a blanket of liquids and gases, as Earth-based observations seemed to indicate.

It’s hard to realize the size of Jupiter (2.5 times the mass of all other planets combined), its rapid spin rate (more than twice as fast as Earth’s), the amount of lightning that we observe, and the extreme temperatures are all working in a liquid. It indicates an environment similar to what we can create in our laboratories here on Earth to produce complex molecules. The Miller-Urey experiment of 1953 earned a Nobel prize for producing an environment in the lab capable of making molecules of amino acids. Now we see a location in space that duplicates much of Stanley Miller’s famous experiment. To be facetious, perhaps God should get a Nobel Prize for something that was operational long before any human existed.

The more we know of the creation, the closer we get to the Creator. Knowing His methods just increases our wonder at His power and wisdom.

— John N. Clayton © 2020

Data from January 6, 2020.

How the Elements Were Created

How the Elements Were CreatedScience has made significant progress in understanding many things about the universe and our planet and the life on it. However, there are many, many things that we have not yet begun to understand. There are also many things we think we understand, but we are still working on better understandings. One question involves how the elements were created.

At the time of the cosmic creation event (widely called the “big bang”), there were atoms with one proton and one electron and some with twice that many. We call simplest element hydrogen, and two hydrogen atoms combine to form helium in the process of nuclear fusion. More and more fusion took place and still is happening in our Sun and other stars. The process requires intense heat and pressure to fuse the atomic nuclei into a heavier atom.

In stars much more massive than our Sun, heavier elements up to iron can are being formed by fusing more and more atoms together. When you go beyond iron, and all the way up to uranium, even the biggest, brightest, and hottest stars can’t squeeze those atoms together. Scientists believe that the heavier elements are created in exploding stars known as supernovae. When they explode, the theory goes, ripples of turbulence form as the supernovae toss their stellar material into the void of the universe. The forces in that turbulence press more and more atoms together to make the heavier elements. As those atomic elements fly off into space, gravity pulls them into lumps which eventually become planets, such as the one on which we live.

A problem with that explanation is that when the atoms are blasted from the supernovae, they are all traveling in the same direction at perhaps the same speed. How can that produce enough force and heat to fuse them together? An alternate explanation is that the explosion within the supernova is not symmetrical, creating areas of greater density. Ultradense and ultrahot regions concentrated in small areas of the exploding mass perhaps give a better explanation of how the elements were created. (See a paper on that published in the Proceedings of the National Academy of Sciences of the United States.)

Carbon is the basic building block of all living cells. Nitrogen and oxygen, which are the next steps above carbon, bond with it along with other atoms to form living molecules. A little higher on the atomic scale are sodium, magnesium, phosphorus, and other elements which are essential to life. Iron, nickel, copper, and other metals are in molecules within our bodies, and we use them in pure form to build our homes, cars, and electronics. The heavier radioactive elements such as uranium deep within the Earth generate the heat that creates a molten iron core that generates a magnetic field which surrounds and protects us. This is a very simple explanation of a very complex system that makes it possible for us to be here.

Science is only beginning to understand how the elements were created and how they are continuing to be created. How did this amazing, complex system come into being with the precision that put life on this planet? We could declare a god-of-the-gaps to say that we don’t understand it and therefore, God did it. It is much better for us to learn HOW God did it. As we begin to see the wisdom required to put this incredibly complex universe together, we become more in awe of the Creator. We don’t have a god-of-the-gaps who “zaps” things into existence like a magician. Our God is an engineer craftsman who creates complexity and beauty that leaves us without excuse. (See Romans 1:20.)
— Roland Earnst © 2019

Alone In the Milky Way

Alone In the Milky Way
Yesterday we mentioned an article by John Gribbin in Scientific American (September 2018, page 96 or online HERE.) The title of the article was “Are Humans Alone in the Milky Way?” Although Gribbin suggests that some form of life exists elsewhere in the galaxy, he insists there could be no sentient beings like ourselves. The reasons for concluding that we are alone in the Milky Way galaxy are these “amazing” and “implausible” “coincidences.”

SPECIAL TIMING. The elements that make up a terrestrial planet like Earth are produced from hydrogen and helium by thermonuclear fusion. We see supernova explosions producing the heavy metals that make up a terrestrial planet and life itself, but it takes time for this process to create the necessary elements. Most of the exoplanets we see have minimal amounts of the heavy elements because they are early in their stellar evolution. Even the sun itself is 71% hydrogen and 27% helium with only 2% metals. The timing of putting the materials together to make a terrestrial planet is critical.

LOCATION IN THE GALAXY. The location of a solar system in the galaxy makes a difference. The galactic habitable zone is the area where there is a freedom from the concentration of supernovae. Systems near the center of the galaxy have high levels of radiation in the form of X-rays and cosmic rays. There is a massive black hole in the center of our galaxy called Sagittarius A which produces massive amounts of radiation. Gamma-ray bursts occur in certain places in the galaxy. In our area of the galaxy, sterilizing radiation bursts do not happen.

Recent studies of the galactic habitable zone tell us that it extends from 23,000 to 30,000 light-years from the center or only about 7% of the galactic radius. This zone contains only about 5% of the stars, because stars tend to concentrate toward the core of the galaxy. Our Sun is close to the center of the galactic habitable zone providing rare long-term stability.

TYPE OF PLANET. So far astronomers have discovered about 50 “earth-like planets.” What that means is that they have found rocky planets in the habitable zone that are about the same size as Earth. Venus would qualify as an “Earth-like planet,” but it is an excellent example of how misleading that statement is. Venus has a thick crust with no sign of plate tectonics, no magnetic field, no way to recycle materials, and no stabilizing moon. Our Moon keeps the tilt of Earth’s axis at 23 ½ degrees providing a stable climate.

Realize that all of these factors are just to have a ball of rock in the right place at the right time with the right materials with which to make life. Now we would need to calculate the odds of getting the right chemicals together at the right time in the right place with the right catalyst to make the first living thing. Books have been written about how improbable those steps are. The writers are not religious fanatics, but scientists who are doing the research.

The Scientific American article, concludes that we are alone in the Milky Way:

“As we put everything together, what can we say? Is life likely to exist elsewhere in the galaxy? Almost certainly yes, given the speed with which it appeared on Earth. Is another technological civilization likely to exist today? Almost certainly no, given the chain of circumstances that led to our existence. These considerations suggest we are unique not just on our planet but in the whole Milky Way. And if our planet is so special, it becomes all the more important to preserve this unique world for ourselves, our descendants and the many creatures that call Earth home.”

We must make one additional point. If an intelligent Creator was involved in this process, the probability of a habitable Earth with life on it is 100%. Perhaps we are not really alone in the Milky Way because there is a God who cares about us. For those who might want to consider this option, we encourage you to watch program #6 of the video series available free on
–John N. Clayton © 2018

Supernova 1987A Celebrates 30th Birthday

Supernova 1987A
Supernova 1987A

On February 23, 1987, a historic explosion was witnessed by astronomers on Earth. A massive star known as Sanduleak -60 degrees 202 exploded. What was previously classified as a supergiant star became a supernova. For the first time since A.D.1054, there was a supernova close enough to the Earth for scientists to observe first-hand what was happening.

Hertzsprung-Russel Diagram
Hertzsprung-Russel Diagram

Students in high school physics and earth science classes study a diagram known as the Hertzsprung-Russell diagram. It is simply a scattergram of the temperature of stars plotted against their luminosity. Stars begin as very hot blue giant stars. As they cool, they turn white-hot, then red, then brown. Then they may become a cinder. In the case of larger stars, the internal processes change, and they become giant stars which in some cases explode. Because these processes require a very long time, we don’t live long enough to see a single star go through all of these phases. But we can see stars in all of these stages. Seeing a star explode is a very rare event (about once a century), and Sanduleak -60 degrees 202 was thus a fantastic opportunity to see in detail what happens when a star explodes.

There is much to learn from Supernova 1987A. Exploding stars seed space with the heavier elements. We are learning how the elements that make up our world were formed. For those of us who believe God is the engineer of all of this, we can see how God made iron, copper, gold and the materials of the Earth’s crust. The incredible energy and power of the process testify to God’s power and creative wisdom. As we compare this supernova with the one that happened in A.D. 1054, which produced what is now called the Crab Nebula, we see it is different in many ways. In 1 Corinthians 15:41 the Bible tells us that “one star differs from another” and we now know that is true even of exploding stars. This supernova also gives us another tool to measure the size and age of the universe. We have several methods of measuring how far away this supernova is, but they all give us the same answer. The explosion took place 160,000 light years away from us, or 160,000 years ago. We are safe from the incredible radiation because of the huge distance.

We now have 30 years of measurements of this historic explosion. This birthday will be celebrated by scientists, but it is also significant to those who enjoy looking into space and seeing the handiwork of God.
–John N. Clayton © 2017