God’s Rototiller the Lyrebird

God's Rototiller the Lyrebird

One of the less known necessities of the natural world is the need to aerate the soil. Without some device to rototill your gardens, the ground would be so hard nothing could grow in it. Worms, moles, groundhogs, and insects work the ground so plants can grow, but the world’s most efficient agent to do this is God’s rototiller, the lyrebird.

These birds of eastern Australia have rake-like feet that are so strong they can crush scorpions. Lyrebirds do more than any other form of life to till the soil. One lyrebird can turn over and aerate 388 tons of material on the ground every year while reducing fire risk. Lyrebirds eat insects that they kick up as they work the soil, reducing the danger of insect infestations.

Humans have learned what it takes the get the soil to yield its best crop. We plow and disk the ground to prepare it for producing plants that give us our food. God’s rototiller, the lyrebird, does it more efficiently by controlling even the pests that would defeat our efforts. The natural world continues to reveal God’s design in ways that we are just beginning to understand.

— John N. Clayton © 2021

Reference: National Geographic February 2021, page 20.

Bacteria Working Together

Bacteria Working Together

Bacteria are single-cell microorganisms that we do not think of as having social behavior. However, scientists are studying Myxococcus xanthus bacteria working together. They are rod-shaped bacteria that live in the soil and organize into structures of thousands of cells to hunt food or to survive when food is not available.

Myxococcus xanthus bacteria are predators that eat other microbes. When they organize into 3-D structures, they can be visible to the naked eye. In this complex form, they swarm toward their prey in a single mass of bacteria working together in “ripples.” You can see them on the left side of the picture.

To capture their food, the swarms of Myxococcus xanthus microbes secrete enzymes that kill and digest the prey and then take in their nutrients. These predator bacteria hunt together because individually they can’t produce enough of the antibiotics to kill the prey, but together they are deadly to other microbes.

When there is a food shortage, scientists still find these bacteria working together to survive. They form a structure called “fruiting bodies” as pictured on the right. In that form, they can survive for years if necessary. As single cells, they would not survive.

Studying how these microbes work can help scientists design new antibiotics or pest-resistant seeds for agriculture. Myxococcus xanthus rods are alive and can crawl, so their movement applies the laws of physics and the biological laws that govern living things. Studying these bacteria may help materials scientists gain new ideas for constructing liquid crystal display screens in electronic devices.

We learn much by looking at what is functional in the natural world. A wonder-working hand has moved before us and gives us tools for developing new materials to improve our lives. Also, bacteria working together can serve as a lesson to remind us that humans can accomplish more when we work together.

— John N. Clayton © 2021

Data from the National Science Foundation which is funding the research.

Good Soils Are Vital for Survival

Good Soils Are Vital for Survival

Many years ago in Alaska, I had a discussion with a biologist who was studying the Alaskan soils. His study revolved around the fact that Alaska has very little soil and what it does have is developing. The lack of soil in Alaska has limited plant growth and made the ecology dependent on migrating salmon. Soils are complex mixtures of organic matter, minerals, water, air, and billions of organisms that form over hundreds of years. Good soils are vital for survival. President Franklin D. Roosevelt once said, “A nation that destroys its soils destroys itself.”

Research has shown that plants are designed to “call” for nutrients from the soil. A plant will release molecules called flavonoids, which cause bacteria in the soil to migrate into the plant and form nitrogen nodules on the roots. The nitrogen nodules generate food for the plant. If ample nitrogen is already available for the plant, it will not release the flavonoids.

This “hunger” by plants is vital to understand because many natural and human-caused processes can deplete the soil. Forest and brush fires, hurricanes, pollution, and climate change can deplete soils’ nitrogen content and kill plants. Studies of the giant sequoias in California have shown that the soil under them has twice as many bacteria as the soil under nearby sugar pines. We all know that bacteria influence human health, but bacteria also affect plant health and growth.

As our population increases and world climates change, it will become increasingly important to understand how soil allows us to feed our growing population. God’s design of the Earth includes providing the soils necessary to produce food. Good soils are vital for survival.

— John N. Clayton © 2020

Reference: The National Science Foundation post on October 14, 2020.

Why We Need Lightning

Why We Need LightningAll life forms on planet Earth need nitrates to build proteins and DNA. We get our nitrates from the plants and seeds that we eat. Plants absorb nitrates from the soil through their roots. The nitrates in the soil come from rain that has absorbed nitrates from the air through which it falls. The nitrates in the air come from the action of lightning. Our atmosphere is 78% nitrogen, and lightning takes some of the nitrogen and catalyzes it into a bond with oxygen to make nitrates. That is why we need lightning.

A surprising thing about this complex system is that the lightning is far more abundant than we realize. Lightning strikes the Earth around 1000 times every second. Above the clouds, in the upper atmosphere, there are continuous lightning types that we don’t see from Earth’s surface. They are called elves, sprites, blue jets, and gigantic jets, depending on their color and shape. There is a voltage difference between the ground and the ionosphere, which varies from 200,000 volts to 500,000 volts. Even in fair weather, there is a constant flow of current, which scientists believe is caused by the spinning of Earth’s core. All of this adds up to a total of over three million lightning strikes a day, and each produces nitrates to sustain life. The jet stream carries these nitrates around the planet, providing a natural fertilizer in places where electrical storms rarely occur.

The Old Testament contains suggestions of this being a part of God’s design for life on Earth. Ecclesiastes 1:6 talks about wind patterns, and Jeremiah 10:13 speaks about lightning. Job 36:29 and 37:21 speak of clouds and bright lights. Lightning is sometimes destructive, often because of foolish construction by humans or ecological problems caused by human mismanagement. In reality, lightning is a tool God uses to build and maintain life on Earth. That is why we need lightning. The more we learn of the creation, the closer we get to the Creator.
— John N. Clayton © 2019

Soil Studies Speak of God’s Preparation for Humans

Healthy Soil
There is an economy of language in the Hebrew descriptions of the Bible. In Genesis 2:8-9 for example, the Bible says: “Now the Lord God had planted a garden in the east, in Eden; and there he put the man he had formed. The Lord God made all kinds of trees to grow out of the ground…”

We can learn a lot from those verses. They tell us that the Lord planted something, he did not “zap” something into existence. Later the man was told to tend the garden (verse 15), suggesting that it needed care to continue to provide for the man’s needs and later for the woman’s needs. How long was it after God planted the trees before they began to produce fruit? What did Adam and Eve have to do to take care of the garden? How long was it before Adam and Eve sinned? What else did God need to do in the process of planting the trees?

This last question opens the door to a great deal of understanding that science has gained in recent years through the study of soil chemistry. Plants do not grow in sterile sand. For soil to nourish plants so that they can feed us, much careful science has to be applied. Modern soil scientists refer to “healthy soil” meaning that it is rich in organic material, is crumbly, and has the right chemical profile. To have these things, the soil must contain microbes including bacteria, fungi, nematodes, and protozoa. A teaspoon of healthy soil can hold more microorganisms than there are people on Earth.

We now know that there is a symbiotic relationship between plants and soil microbes. Plants use the sun’s energy to pull carbon dioxide from the air and create a carbon-rich nutrient packet to allow growth. Oxygen is released in that process. The plants also leak nutrients to the microbes, and the microbes supply plants with other nutrients they have extracted from the minerals in the soil. The fungi produce an underground network that brings water and carbon to the plants. When insects begin to feed on a plant, fungi filaments called hyphae help the plant bring tiny soil nematodes that feed on the insects.

When humans abuse the soil and interrupt this system, we have to artificially add chemicals to do what organisms in the soil were designed to do. The chemicals of modern farming could be reduced or eliminated if farmers worked on building healthy soils. The Garden of Eden was a place of healthy soil. God used incredible wisdom and intelligent design to build a system that would meet human needs. This was done in God’s time and was not a magic show, but a consciously built system that has sustained all living things for a very long time. Proverbs 8:22-31 tells us that wisdom was involved in all of this planning and design, and Romans 1:18-22 lets us know that all of this is a testimony to the existence of God.

There is a wonderful article in the April/May 2017 issue of National Wildlife page 35 (available online http://www.nwf.org/News-and-Magazines/National-Wildlife/Gardening/Archives/2017/Soil.aspx) that documents all of this and shows us the complexity of God’s soil science.
–John N. Clayton © 2017