How Many Moons Are Enough?

How Many Moons Are Enough?
When it comes to moons, it seems that Earth got cheated. We have only one moon while Mars has two. Neptune has fourteen moons. Uranus has twenty-seven. Saturn not only has rings, but it also has sixty-two moons. (Update- We now know that Saturn has 82 moons! Lucky Jupiter has sixty-seven! (Update- It’s now 79!) To add to the embarrassment, puny little Pluto, which is no longer considered a planet, has five times as many moons as Earth has! The only bragging point we have is that we can say we have more moons than Mercury and Venus. (They have none.) So how many moons are enough?

Actually, one works very nicely. Our single moon is critical to the existence of life on Earth. It’s because of the moon that Earth has a stable tilt on its axis of 23.5 degrees. That tilt prevents temperature extremes on this planet. With no inclination, the area of the Equator would be extremely hot and the poles extremely cold and dark all year. With a greater tilt, seasonal weather changes would be extreme all over the planet. Because of the angle of the inclination, we have proper seasons, and the air gets mixed to temper the weather extremes.

Our moon has the right mass at the right distance to keep Earth’s tilt stable. The moon plays several crucial roles in making our planet a great place to live, but stabilizing the tilt is one that’s extremely important. So how many moons are enough? I would say that one moon of the right size and at the right distance is just right.

Oh, and those other planets with more moons — none of them are habitable. Guess who has bragging rights now? Thank God that he gave us a just-right moon, and we don’t need any more. We see evidence of God’s design in every detail of our planet.
–Roland Earnst © 2018

Life Chemical Factory on Enceladus?

Life Chemical Factory on Enceladus
The picture shows Saturn’s moon Enceladus with Saturn in the background and part of a ring visible. Scientists are talking about a life chemical factory on Enceladus. One of the interesting questions about the origin of life is the question of how the chemicals needed to produce life came into existence.

Many believers in God answer that question just saying “God created them” and leaving it at that. For many of us with interest in science, that question expands to trying to understand HOW God created those chemicals. Saying that He spoke them into existence may be theologically acceptable, but the evidence shows that God used processes that we can understand.

Enceladus is essentially a vast ocean of water surrounded by a massive layer of ice. Scientists believe that powerful hydrothermal vents mix up the material found in the moon’s porous core with the salt water that makes up its vast ocean. This material is then ejected out into space in the form of enormous plumes of water vapor and ice granules you can see in the picture taken by the Cassini spacecraft. The sight is quite spectacular, and it was into one of these plumes that NASA’s scientists were able to send Cassini to examine their composition.

What the scientists learned is that the plumes contain organic materials. These are materials that are part of the building blocks of life. Therefore, this moon seems to be a factory that builds several of the ingredients needed to produce life.

Think of how factories produce cars. Factories at different locations all over the country build the parts. The parts come together in one place where highly skilled and creative engineers assemble them into a working automobile. In the same way, we can see a possible life chemical factory on Enceladus.

The more we explore space, the more we understand why these “factories” exist and how they have been used by “the great Engineer” to produce life on Earth.
–John N. Clayton © 2018
For more information from a different perspective go to Space.com

Our Unique Solar System

Our Unique Solar System
As astronomical equipment gets better, the details of stellar systems other than our own show patterns that highlight our unique solar system.

The January 3, 2018, issue of The Astronomical Journal published a report on a study of 909 planets in 355 systems discovered by the Kepler Telescope. The study shows two major patterns in neighboring exoplanets. The first is that those exoplanets tend to have similar masses. The second is that their orbits are regularly spaced from one planet to the next.

Our solar system has inner planets that have mismatched sizes, and they are widely spaced. All models of solar system formation fit what we see in exoplanets. The evidence suggests that exoplanetary systems have not been disturbed since their formation. Our system is different because it shows evidence that it has been disturbed. Jupiter and Saturn seem to be tools that modify the normal pattern of solar system formation.

In 1996 an extraterrestrial rock fragment was discovered in Egypt called the Hypatia stone. The mineral composition of that stone is unlike any other known object in our solar system. Scientists think that it originated outside of our system. Our solar system seems to be unique in both structure and chemical makeup. Astronomers are discovering indicators of how God created the Earth and all of the things that allow life to exist on it.

The design of our unique solar system compared to other systems helps us to understand that we are not a product of chance collisions or explosions in space. The simple statement of the Psalmist in Psalms 19:1 has a different frame of reference now than when it was written. It is truer today than when the ancient shepherd looked at his sky and wrote, “The heavens declare the glory of God and the Earth shows the work of His hands.”
–John N. Clayton © 2018
Data from Astronomy magazine, May 2018, pages 15, 17.

Titan Studies Verify Earth’s Uniqueness

Titan Studies Verify Earth's Uniqueness
Yesterday we wrote about the end of the Cassini mission. We mentioned that an early highlight of that mission was landing the Huygens probe on Titan in January of 2005. Titan is a moon of Saturn and the largest moon in our solar system. Scientists were very interested in studying Titan thinking they might find evidence of life. Instead, the Titan studies verify Earth’s uniqueness.

It took seven years for the Huygens lander to make the 2.2-billion-mile (3.5 billion km) journey to Saturn on board the Cassini spacecraft. Cassini arrived at Saturn in June 2004, but it was not until Christmas Day that the Titan probe separated from the Cassini spaceship. On January 14, the probe entered the upper atmosphere of Titan at 12,400 miles (almost 20,000 km) per hour. After opening three parachutes, Huygens eventually completed a 150-minute descent to land on the surface of Titan.

As Huygens descended to the surface, it made measurements of all kinds and turned on a spotlight to photograph its soft landing. It then sent pictures and data from the surface of Titan to the Cassini spacecraft for about an hour-and-a-half. The Cassini spacecraft relayed the data and pictures to Earth. This expedition was an incredible success and told us much about conditions in another area of the solar system.

Some experts predicted that they would find life, or at least the precursors of life, on Titan. Spectrographic analysis of the atmosphere had shown a huge amount of nitrogen and some methane (natural gas) in the atmosphere. The presence of methane was of special interest to scientists because methane, with a carbon atom and four hydrogen atoms, is the building block of more complicated organic molecules. Some biochemists predicted massive numbers of complex organic molecules in oceans of hydrocarbons on Titan–perhaps even some basic life-forms.

As the Huygens probe sent back pictures from Titan, scientists were amazed to see carved river channels, old shorelines, and clouds. With a temperature of minus 300 degrees Fahrenheit (-184 C) these obviously could not be water-carved channels. As Huygens landed, it broke through a crusty surface and sank several inches into the ground. The chemical studies of the spongy surface showed that it was not rock, but frozen gaseous material. Titan’s atmosphere could not sustain life. The clouds turned out to be methane, and scientists could find no oxygen or oxygen compounds on Titan. Titan has a spongy surface saturated with organic compounds. The density of Titan tells us that deep down under all of this organic ice there must be very dense rock.

It is becoming apparent that the other planets in our solar system have very little in common with Earth. Titan studies verify Earth’s uniqueness once again. Jonathon Lunine, a planetary scientist who worked on this project, described the findings in this way, “This is a planetary scene like no other, vaguely disturbing and nightmarish to me and certainly not Mars or Venus.”

Our point is that all the discoveries science has made about the solar system have shown how special and unique the Earth is. It is wonderful that humans can build a machine to probe such strange and exotic places. As we learn more about the universe, we see the truthfulness of the Psalmist’s words, “The heavens declare the glory of God; the skies proclaim the work of his hands. Day after day they pour forth speech; night after night they reveal knowledge” (Psalms 19:1-2, NIV).
–John N. Clayton © 2017

Cassini Exceeded Expectations

Saturn with its rings and some of its moons.Cassini Exceeded Expectations

On the morning of September 15, 2017, Cassini ended its life in fiery destruction. Cassini was a space probe orbiting and studying Saturn, and by all measures, Cassini exceeded expectations.

NASA, the European Space Agency, and the Italian Space Agency worked together on the Cassini-Huygens space exploration project. The mission was to study Saturn along with its moons and rings. NASA launched the spacecraft in 1997, and it arrived near Saturn and went into orbit around that planet in 2004.

The Huygens (pronounced hoy-guns) lander module, provided by the ESA, separated from the Cassini probe and landed on Saturn’s largest moon, Titan, in 2005. The parachute landing was successful, and the probe sent out data for about 90 minutes. In that brief time, scientists learned much about the surface of that distant moon. Viewed from Titan’s surface, the Sun appeared about the size and brightness of a car headlight 150 meters away. The Huygens probe took pictures and told us that Titan’s surface is dotted with rivers, lakes, and oceans made of methane and ethane. It also has dunes up to 300 feet (91 meters) tall.

Meanwhile, the Cassini probe continued to orbit Saturn and send back amazing and beautiful pictures of its rings and moons for 13 years. Cassini helped us to learn more about the moons of Saturn. The planet has at least 53 moons and possibly eight more. We learned that the moon Enceladus is covered with a liquid water ocean with a surface layer of ice 19 to 25 miles (30 to 40 km) thick. Geysers of water erupt from cracks in the ice. The rings of Saturn are a constantly changing collection of ice particles and small rocks. Saturn has hurricane-like storms at both poles and a hexagon-shaped jet stream at the north pole. How long is a day on Saturn? That’s hard to determine because it is a gas planet and not all parts of it move at the same speed. Scientists estimate a little more than 10 hours.

Cassini exceeded expectations by surviving seven years of travel to Saturn plus 13 years orbiting the planet. As it ran out of fuel, scientists sent it hurtling into Saturn’s atmosphere to burn up so it could not contaminate any of Saturn’s moons by crashing into them.

We are fascinated by the Cassini photos and scientists will continue to study them for years. The picture we posted shows a Cassini view of Saturn and its rings with a bright spot visible below the rings. That spot is the planet where we live. As we look at the hostile environment of space and the other planets, we realize how incredible Earth is. God has given us a place with everything we need for life. You might say that compared to any other place in the universe, Earth exceeds expectations.
–Roland Earnst © 2017