Unique Pollination System of the Jack-in-the-Pulpit 

Unique Pollination System of the Jack-in-the-Pulpit 

Most plants must be pollinated to reproduce, but their methods vary enormously, sometimes involving wind, birds, animals, or insects. However, the unique pollination system of the jack-in-the-pulpit (Arisaema triphyllum ) depends on fungus gnats. 

The jack-in-the-pulpit’s hood resembles pitcher plants that capture and digest insects. Unlike its carnivorous counterparts, this plant uses insects, particularly fungus gnats, for pollination. It lures and ensnares these gnats by emitting a mushroom-like fragrance they find irresistible. The male flowers, blooming first, attract the gnats, which then become dusted with pollen. They manage to escape through a small hole, perfectly sized for a gnat but too small for larger insects. 

The female flowers bloom next, and the gnats carry the pollen to the flower of another jack-in-the-pulpit. This cross-pollination prevents in-breeding for healthier plants. The female flowers don’t have an escape hole, so after the gnats pollinate the flowers, they are trapped and die. But, before the gnats die, they lay their eggs inside the jack-in-the-pulpit. The larvae that hatch from the eggs eat the jack-in-the-pulpit’s blossom as it decays. When the hood of the plant withers, the adult fungus gnats fly away so they can pollinate more jack-in-the-pulpits. 

This unique pollination system of the jack-in-the-pulpit assures the continued survival of the plant and the gnats while controlling the gnat population. The complexity of this system shows design rather than random chance. The more we know of the creation, the more we can see the design skill and wisdom of the Creator. 

— John N. Clayton © 2024

References: ScienceNews and Wikipedia

Mutualism Shows Life Design

Mutualism Shows Life Design - Nitrogen-fixing nodules on legume roots
Nitrogen-fixing nodules on legume roots

We call it mutualism when various complex relationships occur between two species, producing codependency and benefits to both. There are two kinds of mutualisms. In obligate mutualism, both species depend on each other for survival. Facultative mutualism refers to relationships that benefit the species, but they could survive without it. Looking at life on Earth, we see many examples of how mutualism shows life design.

In Borneo, a carnivorous pitcher plant and wooly bats have a relationship of obligate mutualism. The plant lures bats in with an echo reflector, but the plant doesn’t eat the bat. The pitcher plant grows in soils with low nutrients and needs additional fertilizer. The droppings of the bats provide that fertilizer, enabling the plant to survive. The woolly bats are easy victims of predatory animals, but during the daytime, when the bat isn’t hunting insects, it finds refuge and protection inside the pitcher plant. The plant and the bat depend on this relationship, but no one would suggest they are related.

Legumes such as beans, peas, and clover form a mutualism with bacteria. The bacteria can fix nitrogen from the atmosphere, turning it into ammonia. The plants use the nitrogen from the ammonia to synthesize proteins needed for growth. The plants serve the bacteria by housing them in root nodules and providing them with sugars and oxygen so they can grow. Once again, mutualism shows life design.

There are a vast number of smaller organisms that depend upon obligate mutualism. An example is a green-brown spongy sludge that grows on the marshes of the Florida Everglades. It may look like a toxic algal bloom drawing oxygen from the water. But instead of being destructive, it is a mutual design of algae, fungi, microbes, and bacteria. This perfectly matched relationship is called a periphyton. It is a system of life that provides the basis for the entire food chain of the Everglades and another example of how mutualism shows life design.

Trying to explain how mutualism became part of Earth’s living systems by a chance process takes a huge imagination and a great deal of faith. It seems far more likely that mutualism is not an accident but part of God’s design for life. The more we know of the creation, the closer we get to the Creator.

— John N. Clayton © 2024

References: BBC News for February 14, 2024, and Wikipedia

Nepenthes or Pitcher Plants

Nepenthes or Pitcher Plants

One of the most interesting studies in botany is the study of plants that live in areas with little or no soil nutrients. Scientists give them the genus name Nepenthes. We commonly call them pitcher plants and they grow all around the Earth. These plants get their nitrogen and phosphorous by eating insects and animals. Darwin called them part of the “carnivorous syndrome.”

Most people don’t realize that there are well over 100 species of pitcher plants. Each species has some unique features, but there are many things they all have in common. All pitcher plants have a cup which is funnel-shaped or tubular with a sticky digestive fluid inside. The top of the tube has a rim called the peristome which is slippery and causes prey to tumble into the cup. There is a shelter over the top of the pitcher to keep out rainwater which would dilute the digestive juices.

There are highly specialized pitcher plants that eat different things. In 2009, botanists in the Philippines found plants that were nearly five feet (1.5 m) tall and had cups that were roughly a foot (.3 m) in diameter. In Borneo there are pitcher plants that can hold three quarts of liquid and trap lizards, mice, and other small rodents. One species secretes sugary nectar on the lid with a perch that attracts mountain tree shrews. The plant doesn’t eat the shrews, but as the shrew sits on the perch eating the nectar, the pitcher servies as what one study called a “tree shrew lavatory.” The shrew’s droppings provide nitrogen-rich food for the plant.

There are many areas where soils are deficient in nitrogen and phosphorous, but for different reasons and in different amounts. Insects provide the missing nutrients for most Nepenthes in North America. The needs in a desert salt flat are very different from the needs in a tropical rain forest. It is quite a challenge to explain how the diversity that we see has come about by evolution. Furthermore, scientists cannot find an intermediate species, either fossil or living, to explain how Nepenthes developed by evolution. We see a common plan design with local adaptations allowing plants to thrive in environments that lack the essential nutrients for them to prosper.

Nepenthes are so unique that people sometimes collect them for house plants. They are a reminder that God has provided well-designed plants and animals for unique locations. The study of the Nepenthes genus teaches us how special needs for life are met by the intelligence of God as plants and animals reflect God’s wisdom.

— John N. Clayton © 2020

Reference: World Wildlife Magazine, fall 2020, page 4.