Water in the Milky Way Galaxy

Water in the Milky Way Galaxy

We recently reported that there are massive amounts of water in the cosmos. Now, more evidence points to water in the Milky Way Galaxy.

An asteroid belt exists between Mars and Jupiter. Astronomers believe that this belt of material is either a planet that disintegrated or one that never formed because of the gravitational pushes and pulls of Jupiter and Mars. In 2007, NASA launched a probe called Dawn. In 2015, it arrived at one of the largest asteroids named Ceres. The Dawn probe revealed several strange white spots, especially in the Occator Crater. In August of 2020, astronomers presented several papers dealing with evidence that the white spots are ejections of salty water produced from holes punched into Ceres’ surface by space rocks.

Alan Stern of the Southwest Research Institute was involved in the NASA research on Ceres. He is quoted as saying that this discovery is “one of the most profound discoveries in planetary science in the space age.” The Occator Crater is 57 miles (92 km) wide. The material erupting through fractures looks very much like Utah’s Great Salt Lake.

Astronomers suggest that our solar system has large amounts of water stored in the moons of Jupiter and Saturn and Pluto’s surface. Trying to put together a model that explains the formation of wet moons and objects like Ceres is proving to be quite difficult. It appears that whatever the cause, our solar system has a unique water signature.

The abundance of water in the Milky Way Galaxy may turn out to be very important if humans venture into space and start establishing colonies on other worlds. Did God prepare a stepping stone for humans to move beyond Earth’s limitations by placing essential water in our solar system? Perhaps, but as we have said before, we face many other challenges as we venture away from our home planet.

— John N, Clayton © 2021

Data from Discover magazine, January/February 2021 pages 58-59.

Massive Amounts of Water in the Cosmos

Massive Amounts of Water in the Cosmos

One of the things that has entered the debate about life in space has been the presence of water. Astronomers have found methane, ethane, and other compounds in oceans on other planets and moons in our solar system. Unlike water, they are not polar molecules. The polar structure of water makes it an apparent necessity for life. Scientists have debated about whether water has existed or does now exist on Mars, our Moon, or one of the many moons of Jupiter and Saturn. Now there is evidence of massive amounts of water in our solar system.

We have posted before about NASA’s “Astronomy Picture of the Day” website (apod.nasa.gov). On January 15, 2021, the page showed this picture taken by the New Horizons spacecraft on July 14, 2015, as it flew by Pluto. The photograph shows areas of frozen nitrogen and carbon monoxide. It also shows massive amounts of water ice frozen into mountains reaching up to 11,000 feet (3,353 m), which is comparable to mountains on Earth.

There is more and more evidence that, at least in our solar system, water is quite common. Because of the temperatures in the outer planets, that water is in a frozen state. Liquid water has a very narrow range of temperatures, and that means the zone in which a planet can have liquid water is very small. Because of that, life on another planet is improbable, but the potential for humans establishing or supporting life elsewhere is relatively high.

Verse two of Genesis 1 tells us that the early Earth had water in the liquid state: “And the spirit of God moved upon the face of the waters.” Massive amounts of water apparently dominated the planet. Verse six tells us that there was “a firmament in the midst of the waters” that divided the waters. It isn’t until verse nine that dry land appears. The keyword in these verses is the word translated firmament in English. The Hebrew word used here is “raqia.” It is used nine times in Genesis 1 and eight times elsewhere in the Old Testament. Four of those eight are in the visions of Ezekiel 1:22-26.

The Bible’s economy of language leaves us to understand the “firmament” from its context. The most accurate understanding is what, in modern terms, we would call an “interface,” a zone of change. In many cases, that zone is the atmosphere, so in verse 20 of Genesis chapter one, we have birds flying in the firmament. Genesis 1:14-15 tells us that the Sun and the Moon became visible as the darkness (Genesis 1:2) of the cloud cover (Job 38:8-9) in the firmament cleared. Ezekiel saw his chariots in the firmament.

The discovery of mountains of frozen water elsewhere in the solar system indicates that the original cosmos had massive amounts of water, as Genesis 1:6 implies. It also tells us that when the Earth’s temperatures settled to between zero and 100 degrees Celsius, the water became seas covering the planet. This is one more evidence for the integrity of the Genesis account as it describes the creative design of God, simplified so that all humans can understand it.

— John N. Clayton © 2021

Planetary Atmospheric Pressure

Planetary Atmospheric Pressure

The media often overlook how many things have to be “right” for life to exist on a planet. Planetary atmospheric pressure is one factor.

By “life,” we mean the standard textbook definition of organisms that can move, breathe, respond to outside stimuli, and reproduce. The problem is that many conditions make other terrestrial planets (planets with hard surfaces) unlikely to harbor life. Life is even less likely on Jovian planets that are primarily gaseous. You can postulate balloon-like living organisms in Jupiter or Saturn’s atmosphere, but radiation and electrical problems make that unlikely as well.

Planetary atmospheric pressure depends on the weight of the gases above a planet’s surface. The air pressure on Earth’s surface is 14.696 pounds per square inch a sea level. That pressure allows water to exist as a liquid, and it will enable various gases to dissolve in the water. We all know what happens when you shake a bottle of carbonated beverage and then quickly remove the cap. The sudden drop in pressure causes an explosion as the dissolved carbon dioxide escapes from the liquid. For organisms to absorb oxygen dissolved in water, which fish do, the atmospheric pressure must be high enough for the oxygen to dissolve. The atmospheric pressure on the surface of Mars is .01 of the pressure on Earth. That means water on Mars would contain no oxygen or dissolved gases.

There has been discussion about finding water on the Moon or Mercury, but those atmospheric pressures are considerably lower than those on Mars. That means water would not be in a liquid state. On the other end of the pressure spectrum is Venus, where atmospheric pressure 92 times greater than on Earth. At that pressure, toxic gases would be dissolved in any water that existed on the planet.

Planetary atmospheric pressure is just one more variable that must be carefully and precisely chosen when constructing an environment that will support and sustain life. The creation is far more complicated than most of us realize. As we learn more, we must stand in awe of the God who created our planet.

— John N. Clayton © 2021

Data from Astronomy magazine, February 2021, page 10.

Star of Bethlehem and the Planetary Conjunction

Star of Bethlehem and the Planetary Conjunction

People give many different explanations of what the ”wise men” saw that led them to the Christ child. (See Matthew 2:1-12.) One of those explanations says there was a planetary alignment in the constellation Virgo (the Virgin). Since the magi may have been Zoroaster astrologers, they knew Christ had been born and followed “the star.” There is no connection between the star of Bethlehem and a planetary conjunction.

This December 21, at the winter solstice, there is a conjunction of Jupiter and Saturn. If you go outside about an hour after sunset and look to the southwest, you will see that the two planets are separated by less than a minute of arc, even though they are hundreds of millions of miles apart. If your eyesight is not very good, they may look like one very bright star.

This planetary conjunction is an exciting astronomical event, but it is not a good explanation of the star of Bethlehem. Whatever the magi saw, it could not have been a celestial star. Herod could have seen a celestial star for himself and would have had no reason to question its appearance as Matthew 2:3-10 describes. He could have had his people follow the star to find Christ and kill him.

Matthew 2:9 tells us that the star “went before them until it came to rest over the place where the young child was.” The closest star to planet Earth, outside of the Sun, is Proxima Centauri, and it is 4.2 light-years away. No stars move that way, and a planetary alignment is not a star.

The Bible does not present the star of Bethlehem as a natural object but as a miraculous act of God. Anytime the Bible says something is a miracle, it becomes a matter of faith, not science. How Jesus rose from the grave is not something we can scientifically explain. You either accept it, or you reject it, but all attempts to explain it naturally fail–and there have been many.

The star of Bethlehem was a miracle to show God’s acceptance of the Gentiles and to give Mary and Joseph the resources to move to Egypt and avoid Herod’s infanticide. The star of Bethlehem was not a natural event, but today’s planetary conjunction is. As we said yesterday, today’s event is not an omen and has no religious importance, but it is a rare, predictable astronomical event.

— John N Clayton © 2020

Wandering Stars in the Sky

"Wandering Stars" in the Sky

The ancient Greeks saw the five visible planets and called them “wandering stars” because they moved randomly across the sky instead of staying in fixed positions like the stars. The word “planet” comes from the Greek word for “wanderer.”

We have known for many centuries that the planets are not stars. They appear to wander because they orbit the Sun, just like our planet Earth. They orbit at different speeds, making them appear to wander in the sky. For astronomers to classify a celestial body as a planet, it must meet three requirements:

  1. It must have enough mass for gravity to cause it to become spherical, unlike an asteroid.
  2. It must not have enough mass to cause thermonuclear fusion, which would make it a star.
  3. It must have cleared the area of debris known as planetesimals.

We have five planets that are visible without the aid of telescopes or even binoculars. Two of the visible planets are called inferior planets, not because of importance but because their orbit is inside Earth’s orbit. They are Mercury and Venus. The other three are known as the superior planets since they are beyond Earth’s orbit. They are Mars, Jupiter, and Saturn.

There is one essential thing the ancient Greeks did not understand about the solar system. They did not know that it is orderly. The Greeks saw a pantheon of gods controlling various aspects of the Earth and skies. Each of their gods had all of the bad traits of humans struggling with each other. It was the Judeo-Christian concept of one almighty and wise creator God who created an orderly system that led to the scientific understanding of the cosmos.

Today, we can study and understand the wisdom of God in creation. Because of that, we can know where the planets and stars, as well as solar and lunar eclipses, will be visible at any given time and from any location on Earth. Those “wandering stars” are not wandering after all.

— Roland Earnst © 2020

Making Molecules on Jupiter

Making Molecules on Jupiter

In recent years we have come to understand how God formed many of the elements that make up our world and our bodies. We watch stars producing new elements, and we realize that this system was designed by God to take the hydrogen produced in the beginning and continually make heavier elements by thermonuclear fusion. It is incredible to witness the power and design in a nova or supernova and to understand that this is God’s forge to make new elements. Now we have another picture of a design God has used for making molecules.

Molecules are combinations of atoms put together to produce a compound. Simple compounds like water and methane are difficult enough to produce. The huge molecules, such as amino acids that make up living materials, require a particular environment to form. Many of them have been found in space debris, but their origins are not clear.

The latest NASA report on Jupiter has given us some new understanding of making molecules. NASA’s robotic Juno spacecraft orbits only 15,000 kilometers above Jupiter’s cloud tops. Using new data from this spacecraft, astronomers have announced that Jupiter is apparently mostly liquid. It is not a ball of rock with a blanket of liquids and gases, as Earth-based observations seemed to indicate.

It’s hard to realize the size of Jupiter (2.5 times the mass of all other planets combined), its rapid spin rate (more than twice as fast as Earth’s), the amount of lightning that we observe, and the extreme temperatures are all working in a liquid. It indicates an environment similar to what we can create in our laboratories here on Earth to produce complex molecules. The Miller-Urey experiment of 1953 earned a Nobel prize for producing an environment in the lab capable of making molecules of amino acids. Now we see a location in space that duplicates much of Stanley Miller’s famous experiment. To be facetious, perhaps God should get a Nobel Prize for something that was operational long before any human existed.

The more we know of the creation, the closer we get to the Creator. Knowing His methods just increases our wonder at His power and wisdom.

— John N. Clayton © 2020

Data from apod.nasa.gov. January 6, 2020.

Solar System Design

Solar System DesignAstronomers today use technology to examine areas of the cosmos far removed from our solar system. The fact that they are finding the other systems are very much different from ours should tell us something. In fact, the more we study those other systems, the more we learn about our solar system design and why it is the way it is.

One interesting fact about other systems is that even though some planets are very large and obviously gaseous, they can exist very close to their stars. Astronomers in the past explained the fact that the inner planets of our own solar system are rocky and hard by saying that the Sun burned off the gases and left the rocky material. That may be partially true, but in 2002 astronomers discovered a planet they named OGLE-TR-56b. It is about the same mass as Jupiter but over 30 percent larger. It has to be a gaseous planet to have such a low density.

The surprising thing is that OGLE-TR-56b orbits its star at an average distance of only 2 million miles (3.2 million km). Our innermost planet Mercury is 36 million miles (58 million km) from the Sun. The outer atmosphere of this planet must be around 3000°F (1650° C). It is evident that gaseous planets can exist very close to their stars, so our old explanation of the inner planets in our solar system design is vastly oversimplified.

Most of the planets we see around other stars are very large, which is not surprising since it is easier to see a big planet than a small one. One extra-solar planet is 17 times as massive as Jupiter. The strange thing is that many of the giant planets are closer to the Sun than Venus. Old theories of planet formation suggested that due to the large gravity values of stars, it was impossible for planets to form close to the stars. We now know that is not true.

Science programs on television have delighted in proposing that the cosmos is full of planets and that every galaxy has literally millions of planets. The hope is that if you have enough planets, the chance of having another Earth is improved. We now know that many galactic systems do not have planets at all. The composition and age of galactic systems obviously have a major impact on whether planets can exist, but claims of billions of Earth-like planets in the cosmos are highly exaggerated.

The type of star also has an impact on whether planetary systems can form. Most stars in the cosmos are binary systems containing more than one star. A planet can orbit the stars at a great distance, but shifting gravity fields make planets unlikely if the stars are close together, as most are. How much metal there is in a star system affects planet formation. Metal content varies within galaxies as well as between stars. A part of space dominated by gases like hydrogen and helium are not as likely to produce planets as areas where there are large amounts of iron, manganese, cobalt, and the like. Solar system design requires the right kind of star.

Perhaps one of the most exciting lessons we have learned from other solar systems is that the shape of the orbits of planets in our solar system is very unusual. Most of them have very circular orbits meaning that their distance from the Sun does not vary a great deal. Venus has an orbit that is .007 with 0 being a perfect circle and 1 is a straight line. Pluto has the most elliptical orbit, but even Pluto is less than .3 on the 0-1 scale. Our solar system design is unusual.

Circular orbits like ours are very rare in other solar systems where .7 is a very common orbital value, and virtually all orbits exceed .3. If a planet swings far out from its star and then comes much closer, it should be obvious that temperature conditions are going to be extreme. Not only will such a planet have extreme conditions itself, but it will have a very negative effect on any planets that do have a circular orbit in the system. If Jupiter came closer to the Sun than Earth with each orbit, imagine the conditions on Earth as Jupiter went by us.

We now know that our gas giant planets (Jupiter, Saturn, Uranus, and Neptune) are essential to us because their gravitational fields sweep up any debris from outer space. Without those planets, comets and asteroids would pound Earth and life here would be difficult if not impossible. The fact that they are outside Earth’s orbit at a considerable distance and in a circular orbit allows us to exist in a stable condition for an extended time. The comets that do enter our system by avoiding the gas giants do not come in along the plane of the solar system called the ecliptic. Coming in from other directions, they have no chance of hitting Earth since they are not in the plane of Earth’s orbit around the Sun.

Like everything in science, the study of the cosmos and other solar systems speaks eloquently to us about the design and planning that is part of everything in the creation. As we discover more data, other factors will surely tell us how unique our solar system design is. In the twenty-first century, we have more reasons than any humans have ever had to realize the truth of Psalms 19:1.
— John N. Clayton © 2019

Jupiter Is in Opposition

Jupiter Is in OppositionJune 10, 2019, is an excellent time to observe the largest planet in our solar system. The reason is that Jupiter is in opposition to our Sun.

When astronomers say that Jupiter is in opposition, they mean that planet Earth is passing between the Sun and Jupiter. At this time, Jupiter will rise in the east as the Sun sets in the west, and it will set in the west as the Sun rises in the east. In other words, Jupiter will be visible all night long, and it will be at its highest point in the sky in the middle of the night.

The picture was taken by the JunoCam on NASA’s spacecraft Juno which is currently orbiting Jupiter. NASA posts the raw images online and encourages individuals to download and process them. Citizen scientist Kevin M. Gill enhanced this one. You can find access to the raw images and see the work of other citizen scientists by clicking HERE.

When you see Jupiter in the sky tonight, it will not look like this picture, but it will be the brightest object in the sky. Jupiter is not a rocky planet like Earth. It’s a gas giant which if were 80 times more massive, would be hot enough to set off nuclear reactions in its core. Then it would be a star giving off its own light instead of just reflecting the Sun’s light. However, if you could lump all the other planets in our solar system together (including Earth), Jupiter would be 2.5 times more massive than them all.

Why do we need such a huge gas giant in the outer solar system? As we have said in previous posts, Jupiter is a comet sweeper. With its massive size and gravity, Jupiter protects us from objects such as comets coming from outside our solar system. In the 1990s, NASA observed Jupiter pulling apart and destroying comet Shoemaker-Levy 9. You can read about that in our previous post HERE. Jupiter also affects Earth’s climate cycles, which you can read about HERE.

Jupiter is in opposition about every 13 months. Last year opposition occurred in May. Next year it will be on July 14. If you miss seeing Jupiter tonight because of cloudy weather or any other reason, don’t despair. Jupiter will be closest to Earth on June 12, and it will continue to be visible, but right now it’s visible all night long.

While Jupiter is in opposition, or at any other time, look up and thank God that He has created such a marvelous and unique solar system to make life possible.
— Roland Earnst © 2019

How Many Moons Are Enough?

How Many Moons Are Enough?
When it comes to moons, it seems that Earth got cheated. We have only one moon while Mars has two. Neptune has fourteen moons. Uranus has twenty-seven. Saturn not only has rings, but it also has sixty-two moons. (Update- We now know that Saturn has 82 moons! Lucky Jupiter has sixty-seven! (Update- It’s now 79!) To add to the embarrassment, puny little Pluto, which is no longer considered a planet, has five times as many moons as Earth has! The only bragging point we have is that we can say we have more moons than Mercury and Venus. (They have none.) So how many moons are enough?

Actually, one works very nicely. Our single moon is critical to the existence of life on Earth. It’s because of the moon that Earth has a stable tilt on its axis of 23.5 degrees. That tilt prevents temperature extremes on this planet. With no inclination, the area of the Equator would be extremely hot and the poles extremely cold and dark all year. With a greater tilt, seasonal weather changes would be extreme all over the planet. Because of the angle of the inclination, we have proper seasons, and the air gets mixed to temper the weather extremes.

Our moon has the right mass at the right distance to keep Earth’s tilt stable. The moon plays several crucial roles in making our planet a great place to live, but stabilizing the tilt is one that’s extremely important. So how many moons are enough? I would say that one moon of the right size and at the right distance is just right.

Oh, and those other planets with more moons — none of them are habitable. Guess who has bragging rights now? Thank God that he gave us a just-right moon, and we don’t need any more. We see evidence of God’s design in every detail of our planet.
–Roland Earnst © 2018

Venus-Jupiter Affect Earth’s Climate Cycle

Venus-Jupiter Affect Earth's Climate Cycle
A new study shows that gravitational fields of Venus-Jupiter affect Earth’s climate cycle. A research group at Columbia University’s Lamont-Doherty Earth Observatory and Rutgers University released the study on May 7, 2018. Jupiter is the largest planet in the solar system, and Venus is our closest planetary neighbor. Together they have a significant influence on the Earth’s climate.

Dennis Kent, who led the study said, “The climate cycles are directly related to how the Earth orbits the sun and slight variations in sunlight reaching Earth lead to climate and ecological changes.” The study shows that there is a repeating cycle which they calculate takes 405,000 years. That cycle causes wobbles in the Earth’s orbit leading to climate extremes. Not only do studies like this help us understand the past, but they also help in our understanding of current global conditions such as climate change.

The enormous number of things that have to be just what they are for life to exist on Earth continues to grow. In 1961, American astronomer Frank Drake, a founder of the SETI program, presented an equation that attempted to calculate the number of “earths” that might exist in our galaxy. Drake’s equation took the variables that must be right for a planet like ours to support life. He then multiplied the variables together to get the probability of another planet like ours.

Dr. Drake had only seven variables in his calculation, and today that number exceeds 50. We list 47 of them on our doesgodexist.org website, but even that list is far from complete. Now that we know that the gravitational fields of Venus-Jupiter affect Earth’s climate cycle, we have one more factor to add to the list.

Our planet is a delicate place, with an incredible number of factors all contributing to an environment where we can survive, and where humans have survived for a very long time. The more we know about the creation, the more evidence we see for a Creator.
–John N. Clayton © 2018