How Far Away Is the Sun?

How Far Away Is the Sun?Does it matter how far away the Sun is? Absolutely yes. The picture shows the order of the planets in our solar system, but not their distance from the Sun. So how far away is the Sun from Earth?

Any star that has planets orbiting it may potentially create a “habitable zone” where the light and heat are just right for the possibility of life to exist. Earth resides in the middle of the Sun’s habitable zone with Venus and Mars near the edge of the zone. Of course, there are many other factors required to support any kind of life, and it appears that Earth is the only planet in our solar system that has all of those factors. Earth has everything needed to support not just primitive life, but advanced life.

So what is the range of the habitable zone? That depends on the star. The size and brightness of the star are critical. Another essential factor is the type of radiation emitted by the star. Our Sun has the just-right radiation. Other stars may emit x-rays, gamma rays, or other deadly radiation in amounts that would destroy all life and prevent a habitable zone from existing.

Back in the eighteenth century, scientists determined the distance to the Sun by watching a transit of Venus across the Sun. Venus passes between the Earth and the Sun twice every hundred years or so. By measuring the time of the transit of Venus from two locations on Earth, scientists were able to use triangulation and simple math to calculate the distance to the Sun.

But the question was, how far away is the Sun? The Sun is about 93,000,000 miles (150,000,000 km) away from us. Since the speed of light is 186,000 miles (300,000 km) per second, it takes about eight and one-third minutes for the light from the Sun to reach the surface of the Earth. The energy the Sun delivers to our planet is just right to make life possible.

If someone asks you “how far away is the Sun,” you can say it is the “just right” distance. There are so many “just right” features of our planet that we can genuinely say we are in the “Goldilocks Zone.” Some think it was all just an accident, but we believe it was God’s plan and design.
— Roland Earnst © 2019

Galactic Coincidences?


On a clear, moonless night, you can look up and see the Milky Way. Actually, we are in the Milky Way, a spiral galaxy of 200 billion stars one of which is our Sun. We are located in a spiral arm of that galaxy 26,000 light-years from its center. Our location seems to indicate many galactic coincidences.

At the center of the Milky Way (and perhaps all galaxies), there’s a black hole sending out lethal radiation to a distance of 20,000 light-years. Farther out than 26,000 light-years from the center, heavy elements that are vital to our existence and survival are scarce. We are in what astronomers call the “galactic habitable zone.”

Spiral galaxies rotate, and we are near the co-rotation spot where our solar system moves at almost the same rate as the spiral arm we are in. If we were in precisely the co-rotation spot, we would experience gravitational “kicks” which could send us out of the habitable zone. If we were far away from the co-rotation spot, we would fall out of the arm and be subjected to deadly radiation.

In the vast majority of spiral galaxies, the habitable zone and co-rotation spot do not overlap. Most other spiral galaxies are not as stable as ours. Most galaxies are not spiral galaxies and would not have a stable location for advanced life.

Furthermore, galaxies exist in clusters, and our cluster called the “Local Group” has fewer, smaller, and more spread-out galaxies than nearly all other clusters. Most galaxies are in dense clusters with giant or supergiant galaxies which create deadly radiation and gravitational distortion making advanced life impossible.

These are only a few of the many factors that “just happen to be” true of the place where we live. Are these just galactic coincidences? Some say it’s all accidental. We say it’s a grand design by a Master Designer. The next time you look up at the Milky Way, thank God that we are precisely where we are.
–Roland Earnst © 2018

Alone In the Milky Way

Alone In the Milky Way
Yesterday we mentioned an article by John Gribbin in Scientific American (September 2018, page 96 or online HERE.) The title of the article was “Are Humans Alone in the Milky Way?” Although Gribbin suggests that some form of life exists elsewhere in the galaxy, he insists there could be no sentient beings like ourselves. The reasons for concluding that we are alone in the Milky Way galaxy are these “amazing” and “implausible” “coincidences.”

SPECIAL TIMING. The elements that make up a terrestrial planet like Earth are produced from hydrogen and helium by thermonuclear fusion. We see supernova explosions producing the heavy metals that make up a terrestrial planet and life itself, but it takes time for this process to create the necessary elements. Most of the exoplanets we see have minimal amounts of the heavy elements because they are early in their stellar evolution. Even the sun itself is 71% hydrogen and 27% helium with only 2% metals. The timing of putting the materials together to make a terrestrial planet is critical.

LOCATION IN THE GALAXY. The location of a solar system in the galaxy makes a difference. The galactic habitable zone is the area where there is a freedom from the concentration of supernovae. Systems near the center of the galaxy have high levels of radiation in the form of X-rays and cosmic rays. There is a massive black hole in the center of our galaxy called Sagittarius A which produces massive amounts of radiation. Gamma-ray bursts occur in certain places in the galaxy. In our area of the galaxy, sterilizing radiation bursts do not happen.

Recent studies of the galactic habitable zone tell us that it extends from 23,000 to 30,000 light-years from the center or only about 7% of the galactic radius. This zone contains only about 5% of the stars, because stars tend to concentrate toward the core of the galaxy. Our Sun is close to the center of the galactic habitable zone providing rare long-term stability.

TYPE OF PLANET. So far astronomers have discovered about 50 “earth-like planets.” What that means is that they have found rocky planets in the habitable zone that are about the same size as Earth. Venus would qualify as an “Earth-like planet,” but it is an excellent example of how misleading that statement is. Venus has a thick crust with no sign of plate tectonics, no magnetic field, no way to recycle materials, and no stabilizing moon. Our Moon keeps the tilt of Earth’s axis at 23 ½ degrees providing a stable climate.

Realize that all of these factors are just to have a ball of rock in the right place at the right time with the right materials with which to make life. Now we would need to calculate the odds of getting the right chemicals together at the right time in the right place with the right catalyst to make the first living thing. Books have been written about how improbable those steps are. The writers are not religious fanatics, but scientists who are doing the research.

The Scientific American article, concludes that we are alone in the Milky Way:

“As we put everything together, what can we say? Is life likely to exist elsewhere in the galaxy? Almost certainly yes, given the speed with which it appeared on Earth. Is another technological civilization likely to exist today? Almost certainly no, given the chain of circumstances that led to our existence. These considerations suggest we are unique not just on our planet but in the whole Milky Way. And if our planet is so special, it becomes all the more important to preserve this unique world for ourselves, our descendants and the many creatures that call Earth home.”

We must make one additional point. If an intelligent Creator was involved in this process, the probability of a habitable Earth with life on it is 100%. Perhaps we are not really alone in the Milky Way because there is a God who cares about us. For those who might want to consider this option, we encourage you to watch program #6 of the video series available free on doesgodexist.tv.
–John N. Clayton © 2018

M Dwarf Exoplanets

Imagined M Dwarf Exoplanets
One of the interesting scientific discoveries of the past decade has been that there are planets orbiting other stars (called exoplanets) and that many of these planets may have temperatures that would allow liquid water to exist on their surfaces. There has been a special interest in M dwarf exoplanets.

In theory, all stars could have a possible planet in a zone where the temperatures would be between zero and 100 degrees Celcius. However, that zone could be very small, and there are many factors required to make life possible, and many that would make life impossible. In an article in Science News dated June 24, 2017, (page 18) some of those factors were mentioned. They include stellar flares, gravitational locking, and especially the life expectancy of the star.

Stars age and the period during which their habitable zone could exist in a stable form is very short. M dwarf stars are held up as having long enough lifetimes for water to exist and biological processes to take place. Since they are the most common type of star in the Milky Way (70% of all the stars in our galaxy) scientists are studying them closely. We have reported before on one of them called TRAPPIST-1.

As more data comes in, it is becoming apparent that although M dwarf exoplanets remain as they are for very long times, they are still not stable enough to sustain life. Scientists hoping to find another “earth” orbiting another star are learning that M dwarfs are not good candidates even though they have some of the conditions necessary for life.

As we have said before, if God wanted to, He could create life elsewhere in the universe. However, the special nature of Earth continues to be more apparent the more we learn. As we learn more about the universe, we see more clearly that “the heavens declare the glory of God and the firmament shows His handiwork” (Psalms 19:1).
–John N. Clayton © 2017

Exoplanet Data Goes Wild

Alien Planet Fantasy
Alien Planet Fantasy

An exoplanet is a planet orbiting a star other than our Sun. At the time that I am writing there are 3,565 known exoplanets, but by the time you read this, there could be over 4,000. In spite of what the media says, there have been no “Earth-twin,” “habitable,” or “Earth-like” planets found. These are cliches the media throws around which have very little scientific validity. When a scientist identifies a planet as being in a habitable zone, it simply means that water could exist on the planet in a liquid form. Scientists consider water, carbon, and oxygen essential for life. But there are many other variables that must be carefully chosen before an “Earth-like” planet could actually have life on it.

The exoplanets that have been discovered so far are an incredibly varied group. Most are too big, too hot, too gassy (like our gas giant Jupiter), or they have orbits that are too eccentric (ovals, not circles) to support life. Some planets are so hot that they rain glass. Others are so cold that no biological organism could exist on them. The stars around which these planets orbit are also an incredibly varied group with enormous ranges in size, activity, temperature, and radiation levels. In most cases, those stars are orbiting other stars making life nearly impossible.

Every day new discoveries are reported. We now understand more about how planets form, and that tells us how special our planet is. We need to take care of it, because moving to another planet is not feasible now, and may never be possible. Data from Discover magazine, April 2017, pages 40 -45.
–John N. Clayton © 2017