Ecosystem Design and Stewardship

Ecosystem Design and Stewardship on Planet Earth

An ecosystem is a complex network of living and non-living things interacting with one another in a specific environment. It includes all the living organisms, such as plants, animals, and microorganisms, as well as the non-living components, such as air, water, soil, and climate. These living components are adapted to the non-living components in an interdependent system, with each relying on the others. We see ecosystem design everywhere we look on planet Earth.

Ecosystems exist in water environments, from ponds to streams to rivers to the oceans. They exist on land in forests, mountains, and deserts. They vary from tropical rainforests to frozen tundra. Each ecosystem has a unique balance of species, with each species playing a specific role. This balance is maintained through various mechanisms, including competition, predation, and mutualism.

Ecosystem design provides many vital services affecting human life, such as water filtration, air purification, and food. At the same time, humans have a profound impact on ecosystem management through deforestation, destruction, and pollution. Careless actions of humans can disrupt the delicate balance of ecosystems, leading to a decline in biodiversity, the extinction of essential species, and climate change.

Conservation and management efforts aim to protect and restore ecosystems and maintain their resilience. This involves protecting habitats, reducing pollution, and managing human activities to minimize ecosystem harm. It also requires monitoring and understanding environmental change and taking steps to reduce or correct human-caused impacts. As we protect ecosystems, they provide services critical to life on this planet. That is part of ecosystem design.

An ecosystem is an ecological system. As we think about the multitude of ecosystems, large and small, localized and widespread, we must realize that they are systems. Do systems happen by accident, or do they require intelligent planning? Can complex things come together to form an efficiently-functioning ecosystem on their own? Every living thing consists of many complex systems within the cells, organs, and whole bodies. Ecosystem design involves systems within systems within systems working together in balance.

Can efficient, balanced systems happen without a system designer? If there is a Designer of Earth’s ecosystems, as I believe there is, we owe it to Him to take care of what He has given for our existence and enjoyment. Genesis tells us that God gave humans the job of managing the creatures and ecosystems of planet Earth. (See Genesis 1:28.) We must avoid the rebuke the rich man gave to his unworthy steward in a parable Jesus told. “What is this I hear about you? Give an account of your stewardship, because you can no longer be my steward” (Luke 16:2).

— Roland Earnst © 2023

Design of Sunflowers for Optimum Pollination

Design of Sunflowers for Optimum Pollination

Everyone knows that sunflower heads turn to follow the Sun throughout the day, allowing them to get the maximum amount of sunlight. However, researchers have found another feature that helps sunflowers to thrive. Plant biologists at the University of California, Davis, have published a report showing the incredible design of sunflowers for optimum pollination.

The sunflower head has hundreds of tiny florets. The newest florets are at the center of the bloom, and the most mature are at the edges. Their design forms a distinctive spiral pattern from the center to the edge. Each floret blooms over two days. On the first day, the male part of the bloom opens, presenting pollen. The female stigma unfolds to receive the pollen on the second day. In some way, the florets coordinate their opening, beginning at the edge and moving toward the center. This progressive opening leaves a ring of female flowers outside the earlier stage of pollen-bearing males.

Pollinating insects (primarily bees) tend to land on the edges and walk toward the center. In that way, they pick up pollen after they have walked over the female florets. Then they carry the pollen to a different flower head for cross-pollination. This coordinated opening design attracts as many insects as possible and makes pollination as efficient as possible.

The sunflower’s circadian rhythm, influenced by sunlight, controls the opening of the sunflower’s florets. People, animals, and plants have a built-in circadian clock as part of our design. We see it in the design of sunflowers for optimum pollination.

Understanding how to develop plant cultivars that can optimize pollination is essential since the bee population has been declining. We have much to learn about God’s design in the plant and insect world. Studies like this can help us meet the food shortages affecting many people on this planet.

— John N. Clayton ©

References: the National Science Foundation and elifesciences.org

Bugs and Cars Colliding

Bugs and Cars Colliding

When I go on a summer road trip, I always return with hundreds of insects smashed on the front of my car. Those bug remains are a real challenge to remove. So why don’t those little critters have enough brains to get out of the way? Bugs and cars colliding is a great summertime nuisance.

Okay, I know those insects that lost their lives playing a game of chicken with my vehicle don’t have very big brains – if they have any at all. I also realize that my car is much bigger than they are and probably traveling at a faster speed, so it’s hard for them to get out of the way. I also realize that the consequences of our brief encounter are much more tragic for them than it is for me. But I have never seen two bugs crashing into each other in mid-air. They can swarm in great numbers and never crash and fall from the sky. They must have some kind of collision avoidance system.

God gave insects the ability to avoid collisions with each other long before cars entered the scene. That fact led scientists at Penn State University to do some research on bugs and cars colliding. They probably can’t do much to give bugs the ability to avoid cars, but they wanted to give cars the ability to avoid hitting each other. Since bugs somehow avoid mid-air collisions with such skill, can their technology be applied to cars?

Even though only a fourth of driving occurs in the dark, half of all traffic fatalities happen at night. (It’s also when many insect species are most active, but that’s beside the point.) Present vehicle technologies for avoiding collisions use Light Detection and Ranging (LiDAR) or image sensors running sophisticated software. The systems are expensive and use lots of energy. The researchers wrote, “…task-specific obstacle avoidance algorithms allow insects to reap substantial benefits in terms of size and energy.” They wanted to learn how the bugs do it with tiny brains and micro-energy.

We have often talked about how scientists studying God’s creatures and creation have discovered ways to accomplish tasks more effectively and efficiently. For example, this new research shows ways to avoid vehicle collisions in a simpler, less expensive, and more energy-efficient way using a new algorithm based on the neural circuits of bugs.

God told Job, “If you want to learn, then go and ask the wild animals and the birds, the flowers and the fish. Any of them can tell you what the Lord has done” (Job 12:7-9 CEV). This research may not solve the problem of bugs and cars colliding, but it can help to solve the much more dangerous problem of cars colliding with other cars. Of course, you will still have to keep the scrub brush and bucket of cleanser handy.

— Roland Earnst © 2023

References: acs.org and popsci.com

Venomous or Poisonous – What’s the Difference?

Harlequin Poison Dart Frog - Venomous or Poisonous – What’s the Difference?
Harlequin Poison Dart Frog

People often think of venom or poison as the same thing, but they are not. Even though people may use those terms interchangeably, there are differences in their origin, delivery system, and effects on the body. So, when is it correct to say that something is venomous or poisonous?

Venom is a toxin produced by animals, usually in specialized glands. It’s delivered to the victim through a bite or a sting. Animals use venom to capture prey and for defense from predators – and sometimes humans. For example, snakes, spiders, scorpions, and some species of fish, frogs, and insects produce venom. Venomous animals have specialized structures, such as fangs or stingers to deliver the venom into the victim’s body. The effects vary from mild pain and swelling to severe muscle paralysis and even death.

In contrast to venom, poison is a toxic chemical produced by plants, animals, fungi, microorganisms, or humans in a chemical lab. Poison is usually ingested, inhaled, or absorbed through the skin. For example, many plants produce poisons to protect themselves from herbivores and other potential threats. Poisonous mushrooms, toxic berries, and certain types of flowers are examples of plants that produce poisons.

The effects of poison can depend on the type and amount consumed. Some common effects include nausea, vomiting, dizziness, and even death. Many everyday household items are poisonous and must be secured so children or animals can’t ingest them. Medicines that promote healing or fight disease are often poisonous if taken in the wrong quantities or in the wrong way.

So, if someone talks about a poisonous snake or scorpion, they are using the wrong term. Those animals are venomous. Poison does its damage when ingested, inhaled, or touched. For example, a poison dart frog is poisonous, but wasps, spiders, and snakes can be venomous. Some animals or insects are poisonous if eaten but venomous if they bite or sting. Monarch butterflies are mildly poisonous to potential predators, but box jellyfish are highly venomous and deadly to humans. If in doubt, the word “toxic” covers both, but it’s not as precise.

When saying that an animal is venomous or poisonous, remember this. A poisonous animal, such as a poison dart frog, is always poisonous and does not choose to be. A venomous animal, such as a snake, must choose to administer the venom. Humans can choose to avoid poison, but often they do not. People can take poison by mouth or inject it into themselves or someone else. We call that foolishness or murder. Alcohol is a poison that people consume as a drink, sometimes resulting in death. Self-inflicted poisoning by illegal drugs such as fentanyl is causing many deaths in the United States.

Some people ask, “Why would a good God create venomous or poisonous animals?” There is a good reason because those toxins serve as a defense mechanism or a method to capture prey for food. The more troubling question is, “Why would intelligent humans choose to put poisons into their bodies?” When asking that question, remember that it all started with Adam and Eve. “And the Lord God commanded the man, saying, ‘Of every tree of the garden you may freely eat; but of the tree of the knowledge of good and evil you shall not eat, for in the day that you eat of it you shall surely die’” (Genesis 2:16-17). The good news is that God provided the cure for the poison of sin. “For the wages of sin is death, but the gift of God is eternal life through Jesus Christ our Lord” (Romans 6:23).

— Roland Earnst © 2023

The Uniqueness of Planet Earth

The Uniqueness of Planet Earth

One of the positive things about science is that its methodology allows change. When new data become available, theories are either supported or discarded, resulting in the constant evolution of what scientists believe to be true. This applies to our understanding of the uniqueness of planet Earth.

Experts from NASA’s Goddard Space Flight Centre have announced that a widespread assumption about life on other planets is not valid. Science has assumed that other stars similar to our Sun in size and type also have similar stability. The Sun has not changed significantly in brightness and temperature in the hundreds of years that scientists have been observing and measuring it. Recent measurements of similar stars show that three-quarters of them go through changes in both brightness and temperature.

Dr. Noah Tuchow of NASA says that the number of alien worlds that could contain life has been “vastly overestimated.” The planetary zone where water could exist as a liquid is known as the “Goldilocks Zone.” A planet would have to be orbiting a star with relatively constant heat output to be in such a zone. Planets that formed too close to be in the star’s habitable zone would have their water boiled away. Those that began beyond the habitable zone would have frozen water that would take a long time to melt. Either way, they would have a relatively short time to support life. This shows the uniqueness of planet Earth.

NASA has created a new label for planets that enter the habitable zone after their formation due to orbiting a changing star. They call it the “Belatedly Habitable Zone” (BHZ). Dr. Tuchow says, “A planet’s history dictates its current potential to host habitable conditions and life.”

Our point is the uniqueness of planet Earth, not whether it is the only place where life exists. However, if life exists elsewhere, God created it. Every discovery scientists make shows that Earth is an extraordinary place and our Sun is an exceptional star. Considering what we have learned about the cosmos, the statement of Psalms 19:1 is more meaningful today than when it was written thousands of years ago: “The heavens declare the glory of God, and the sky shows His handiwork. Day to day they utter speech, and night to night they show knowledge.”

Please go to our doesgodexist.org website to see a chart titledEvidence for Design in the Universe,” listing 47 of the vast number of variables required for a life-sustaining planet. The constancy of the parent’s star adds one more limiting variable to what it takes to have a world able to support life.

— John N. Clayton © 2023

References: ARXIV and MSN.com

Mountain Chickadee Brains

Mountain Chickadee Brains

One interesting scientific question is whether brain cells can be increased or replenished. People say the brain is the only body part where the cells are not replaced every seven years. That seems reasonable since replacing brain cells could cause us to lose stored memories. Doctors are limited in what they can do to help people with brain injuries because of the inability to repair or replace brain cells. Scientists have found some interesting facts in a recent study of mountain chickadee brains.

The study at the University of Nevada has shown that brains can change when environmental factors demand it. Researchers comparing the brains of chickadees separated by a few kilometers in the Sierra Nevada Mountains found substantial differences in the brains of the two populations. Chickadees living at an elevation of 7800 feet showed significant brain differences compared to those living at 5900 feet. The hippocampus of the higher-elevation chickadees was larger, and the neuron density was greater. Tests showed enhanced spatial cognition at higher elevations, so caching and recovering food will be better for the higher mountain chickadee brains.

If you assume that both populations of chickadees came from a common ancestor, then brain development genetic change has been catalyzed by environmental factors. For example, a greater need for food caching and recall has led to physical changes in mountain chickadee brains.

The question is, could we apply this to humans with brain injuries? Is the brain designed to allow this kind of change? The brains of chickadees living in the harshest environment must develop better spatial memory to survive. Does this mean human intelligence can be affected by life challenges and environments? We need to point out that intelligence is not necessarily related to brain size because a bigger brain does not mean you are more intelligent.

Studies like this demonstrate the flexibility God designed into the DNA of living things. So maybe being called a “bird brain” is not as derogatory as people previously thought.

— John N. Clayton © 2023

Reference: Living Bird magazine from the Cornell Lab of Ornithology for the winter of 2023, pages 46 – 53, and “Harsh Mountain Winters Have Made Chickadees Smarter” at allaboutbirds.org

Echidnas Are Extremely Sensitive to Heat

Echidnas Are Extremely Sensitive to Heat

One of the most curious animals on our planet is the short-beaked echidna found in Australia, Tasmania, and New Guinea. This animal is a monotreme, a mammal that lays eggs. The echidna and the duckbill platypus are the best-known animals in this grouping. Echidnas eat ants, so they are also known as spiny anteaters. What you probably don’t know is that echidnas are extremely sensitive to heat. 

An echidna’s body temperature is normally 38 degrees Celsius (100.4 degrees Fahrenheit). If the environmental temperature hits 35 degrees Celsius (95 degrees Fahrenheit), it can be fatal for echidnas. This may sound like an impossible situation since Australia can be very hot, especially in the Dryandra Woodland and Boyagin Nature Reserve. That is where a large echidna population lives about 170 km (105 miles) south of Perth. 

Research published in Biology Letters studied 124 echidnas to see how the animals could handle the heat since they can’t dissipate it by panting, sweating, or licking. The researchers found that echidnas blow bubbles from their noses. The bubbles burst and wet the nose tip. As the moisture evaporates, it cools the animal. The evaporation of water at 100.4 degrees Fahrenheit removes 540 calories per gram of water evaporated. Even though echidnas are extremely sensitive to heat, evaporation protects them from injury.

In addition to the bubble-blowing snout, echidnas have quills to protect them from predators. The echidna’s unique design is very difficult to explain by chance evolution. Instead, God has designed creatures to survive as they deal with the varied conditions around the planet. Everywhere we look, we see that a wonder-working hand has gone before. 

— John N. Clayton © 2023

Reference: Biology Letters and “This egg-laying mammal blows bubbles to cool off” by Ashley Strickland posted on CNN World January 18, 2023

Asking a Computer if God Exists

Asking a Computer if God Exists

Years ago, I heard a joke that went something like this. Scientists developed a massively powerful computer that could answer any question. The researchers asked the computer, “How did the universe begin?” The computer whirred, lights flashed, and out popped this answer: “See Genesis 1:1.” That joke originated when computers filled a large room, had spinning reels of tape and flashing lights, and used punch cards. Now, computers are small, use keyboards and monitors, have voice recognition, and speak in many languages. Soon we may have quantum computers with capabilities only dreamed of today. Have you ever tried asking a computer if God exists?

A topic that has received much publicity in recent months is artificial intelligence (AI). As computers become more humanlike with their ability to speak and answer questions, we are coming to depend on them more and more. Knowledgeable people suggest that the growth of AI will dramatically affect business, medicine, and entertainment. Other areas expected to face major changes because of AI are work, war, and education.

Recently, I have seen articles concerning a new AI development that worries educators. It’s called ChatGPT. This app can do more than answer questions. It can write essays. A student with an assignment to write a 500-word essay on a subject can input the topic and let ChatGPT write the paper. I decided this would be a good opportunity for asking a computer if God exists.

Going back to that old story, I asked the computer, “How did the universe begin?” ChatGPT responded with a 237-word essay on the Big Bang that agreed with current scientific theories. It was nicely worded, grammatically correct, and would probably satisfy a school teacher. However, it didn’t fully answer the question, just as the Big Bang theory does not.

Then I asked ChatGPT to write an essay about proving the existence of God. The result was 430 words that read in part:

“One of the most commonly cited arguments for the existence of God is the cosmological argument. This argument states that the universe had a beginning, and that everything that begins to exist must have a cause. Therefore, it is reasoned that the universe must have been caused by something that exists outside of the universe, and that this cause is God. This argument is based on the principle of causality, which states that for every effect, there must be a cause.
Another argument for the existence of God is the teleological argument. This argument states that the universe is complex and ordered, with many intricate systems and processes that work together in harmony. This complexity and order is argued to be the result of an intelligent designer, which is God. The design argument is based on the idea that the universe is too complex and ordered to be the result of chance, and that it must have been created by an intelligent being.
A third argument that is often used to prove the existence of God is the moral argument. This argument states that humans have a moral sense, and that this moral sense must come from a higher being, which is God. The moral argument is based on the idea that moral laws and values cannot be explained by natural causes, but must be the result of an intelligent and moral being.
Some people argue that the existence of God can be known through personal experience, through faith. They believe that God can reveal himself in personal experiences, such as through prayer, meditation, or other spiritual practices. They argue that the existence of God is something that can be known through a personal relationship with God, and not something that can be proven through reason or science.”


That summarized the arguments for God’s existence. Then, however, I decided to make the question more direct by asking a computer if God exists. So I asked ChatGPT, “Does God exist?” The answer came back in 195 words that concluded with:

“Ultimately, the question of whether or not God exists is a matter of personal belief and faith. It is important for individuals to form their own opinions on the matter based on their own experiences, beliefs and personal understanding of the world.”

Since ChatGPT never referred me to Genesis 1:1, I decided to ask, “What do we learn from Genesis 1:1?” I received this response:

“It teaches that God is the creator of all things, including the heavens and the earth. Additionally, it implies that God’s creation of the universe was a purposeful and deliberate act, rather than the result of chance or natural processes.”

I certainly can’t argue with that. I conclude that asking a computer if God exists will never result in a definitive answer to the question. Each of us must reach our own conclusion based on examining the evidence with an open mind.

— Roland Earnst © 2023

Reference: ChatGPT from OpenAI

Why Would a Good God Create Viruses?

Why Would a Good God Create Viruses?

Think of the many illnesses that viruses cause, such as rabies, polio, Ebola, measles, mumps, yellow fever, influenza, HIV, chicken pox, hepatitis, shingles, rabies, and, of course, COVID. That is only a partial list. Some skeptics use this as an argument against the existence of God. Why would a good God create viruses?

Viruses are diverse and abundant beyond what we can imagine. The truth is that life on Earth could not exist without them. Even though many of them cause harm, they are essential tools in God’s construction of life.

By the usual definition of life, viruses are not alive since they cannot reproduce on their own. Instead, they must enter a living cell and coopt its replication functions to produce more of themselves. First, they hijack the 3D-printing machinery of the cell that turns genetic information into proteins. Then they damage the cell as they break out and spread to other cells. At least, that’s what happens in the case of the diseases mentioned. In COVID, the damage is to the victim’s respiratory tissue cells. So, why would a good God create viruses?

Viruses are present in every species of living creatures. They can be considered parasites, but sometimes they are in a symbiotic, or mutually beneficial, relationship with their host. They may remain dormant or even contribute to adaptive benefits. Problems often arise when a virus from one species enters another species. That is what happened with COVID and many other viral diseases. Most of them are known to have come into the human population from animals.

Scientists have only recently discovered that some viruses serve as food for certain microbes. They found that a single-celled microbe in the genus Hateria can live and grow on a virus diet, eating up to a million viruses per day. In turn, microbes are eaten by larger plankton which are consumed by larger predators which find their way into the stomachs of ever larger creatures going up the food chain to sustain life.

In addition to viruses contributing adaptive benefits to their hosts and providing food for microbes, they also serve other ecological roles. For example, some viruses infect algae. Algae blooms harm marine life, but the invading viruses help to control these aquatic algae blooms. Scientists have also found that viruses have contributed genes to human DNA that assist in embryonic development and help us resist infections and even fight off cancer.

So there are answers to the skeptic’s challenge, “Why would a good God create viruses?” Viruses are not evil, but they are a reflection of the design of the world in which we live. Their complexity allows them to shape and mold every aspect of the design of life.

— Roland Earnst © 2023

References: “Viruses as prey? It’s just one of the surprising roles they play” and “How viruses shape our world” on NationalGeographic.com

Flamingos Sleep Standing on One Leg

Flamingos Sleep Standing on One Leg

Most of us have seen flamingos or at least pictures of them. Their bright pink plumage is hard to miss, and it is quite a sight when they travel in groups. We also may have marveled at a bird that eats with its head upside down. Even more remarkable is the fact that flamingos sleep standing on one leg. Because they retract the other leg into their body, people assumed that the one-legged stance was to conserve body heat. However, researchers investigating this odd behavior have found that it is both an energy-saving and safety design.

A flamingo’s knee is located close to its body. The joint you may have thought was the knees is actually the ankle. Researchers found that flamingos can lock their knee and stabilize their center of gravity over one leg. When flamingos sleep standing on one leg, they are very stable. When asleep, their swaying decreases sevenfold compared to when they are awake. They have virtually no muscle movements in their legs and feet while they sleep. In fact, dead flamingos are capable of standing on one leg when placed in a vertical position.

Roosting is one of the most dangerous times for any bird because predators can sneak up on them. However, Flamingos can roost while standing in water away from the shore, significantly reducing their risk of being eaten. The design of their legs and knees allows this unusual method of survival.

God has provided special equipment for survival to all living things. We cannot see the unique characteristics of flamingos as accidental mutations. God’s design is incredible and allows the great diversity we see in life on Earth.

— John N. Clayton © 2023