Color Vision Gender Differences

Color Vision Gender Differences
There are many differences between men and women, but you realize that there are color vision gender differences?

Light is electromagnetic radiation that stimulates our eyes. There are only specific frequencies of the electromagnetic frequency spectrum that we can see. Frequencies below the range of visible light are called infrared. We can sometimes feel infrared radiation as heat, but we can’t see it, although some animals can. Frequencies higher than visible light are ultraviolet which we can’t see, but it affects our skin and can cause sunburn. Some animals can see infrared light.

Within the visible spectrum of light that humans can see, different bands of frequencies affect our eyes differently. Most of us have receptors in our eyes for the wavelengths which we call red, green, and blue. When light stimulates those receptors, they send a signal to our brain which combines the signals to allow us to see many variations in colors.

People with colorblindness (mostly men) have one of those color receptor categories missing. The missing color may be either red or green. Why are men colorblind more often than women? The genes that encode the red and green receptors are located in the X-chromosome. Men have one X- and one Y-chromosome. Women have two X chromosomes. That means that if a man has a defective X-chromosome, he is out of luck. A woman would need to have two defective X-chromosomes to be colorblind.

It’s interesting that the chromosome pair that creates the sex differences also explains the color vision gender differences. God said, “It is not good for man to be alone” and He took something out of the man to create a woman. Then He put them together to complete each other. In many ways, men and women really do need each other to be complete.
–Roland Earnst © 2018

Incredible Color

Incredible Color
Our ability to see the incredible color in the world around us is amazingly complex. We don’t actually see color with our eyes. We see color with our brains.

Most humans have trichromatic vision. Our eyes only detect red, green and blue. If our eyes detect a lot of red and green but not much blue, our brains decide that we are seeing yellow. When our eyes register equal amounts of red, green, and blue, our brain decides that we are seeing gray. If red and blue are present, but not much green, our brain decides we are seeing purple.

Some of us do not have red or green receptors in our eyes, especially people with XY chromosomes (males). We call it color blindness, but in reality, our eyes just don’t see one particular set of wavelengths. Some of us with XX chromosomes (females) may have tetrachromacy which means we see more than the three primary colors.

In the animal world, color is produced by many different techniques. The wings of the Morpho butterfly appear to be blue or violet depending on how the light strikes them. This is due to light-scattering scales that cover the insect’s wings. Dragonfly wings look similar to the Morpho wings, but the dragonfly’s color comes from waxy crystals that cover layers of the pigment melanin. We call the method of color production in these insects “structural color” because it is produced by the structure of the material rather than by pigments. Cameleons also use structural color using nanocrystals in their skin. They can tune the nanocrystals to reflect different colors. In this way, they can match the color of their environment or their mood.

We use color in many different ways such as camouflage, disguising foods to avoid their natural look, and to identify things. Much of the color that we see in the world has no practical value. For the most part, beauty is not a survival attribute. Evolutionary models attempt to explain some of the coloration we see around us, but in many cases, color is not a survival factor. Incredible color may be simply an expression of God’s desire for us to see the beauty and the majesty of His creation.
–John N. Clayton © 2017