Nepenthes or Pitcher Plants

Nepenthes or Pitcher Plants

One of the most interesting studies in botany is the study of plants that live in areas with little or no soil nutrients. Scientists give them the genus name Nepenthes. We commonly call them pitcher plants and they grow all around the Earth. These plants get their nitrogen and phosphorous by eating insects and animals. Darwin called them part of the “carnivorous syndrome.”

Most people don’t realize that there are well over 100 species of pitcher plants. Each species has some unique features, but there are many things they all have in common. All pitcher plants have a cup which is funnel-shaped or tubular with a sticky digestive fluid inside. The top of the tube has a rim called the peristome which is slippery and causes prey to tumble into the cup. There is a shelter over the top of the pitcher to keep out rainwater which would dilute the digestive juices.

There are highly specialized pitcher plants that eat different things. In 2009, botanists in the Philippines found plants that were nearly five feet (1.5 m) tall and had cups that were roughly a foot (.3 m) in diameter. In Borneo there are pitcher plants that can hold three quarts of liquid and trap lizards, mice, and other small rodents. One species secretes sugary nectar on the lid with a perch that attracts mountain tree shrews. The plant doesn’t eat the shrews, but as the shrew sits on the perch eating the nectar, the pitcher servies as what one study called a “tree shrew lavatory.” The shrew’s droppings provide nitrogen-rich food for the plant.

There are many areas where soils are deficient in nitrogen and phosphorous, but for different reasons and in different amounts. Insects provide the missing nutrients for most Nepenthes in North America. The needs in a desert salt flat are very different from the needs in a tropical rain forest. It is quite a challenge to explain how the diversity that we see has come about by evolution. Furthermore, scientists cannot find an intermediate species, either fossil or living, to explain how Nepenthes developed by evolution. We see a common plan design with local adaptations allowing plants to thrive in environments that lack the essential nutrients for them to prosper.

Nepenthes are so unique that people sometimes collect them for house plants. They are a reminder that God has provided well-designed plants and animals for unique locations. The study of the Nepenthes genus teaches us how special needs for life are met by the intelligence of God as plants and animals reflect God’s wisdom.

— John N. Clayton © 2020

Reference: World Wildlife Magazine, fall 2020, page 4.

Plant Chemistry for Survival

Plant Chemistry for Survival - Gardenia Fruit
Gardenia Fruit
Saffron Flower and “Threads”

Plants have a unique problem that animals don’t have. That problem is a lack of mobility. Since plants are unable to move, they manufacture chemical toxins to kill bacteria, alkaloids to ward off herbivores, and sweetness or color to draw in pollinators and animals that will disperse their seeds. They use plant chemistry for survival.

Crocus and gardenia flowers produce a chemical compound known as crocin. It gives the color to the gardenia’s red-orange fruit. Crocin is also the chemical that gives the stigmas of saffron flowers, commonly called “threads,” their bright hue. Researchers at the University of Buffalo have sequenced the genome of the gardenia and examined how it makes crocin. By duplicating those processes, they have produced crocin in the lab and made it available for use in medical and nutritional applications. Crocin has antioxidant properties and may help in the suppression of cancer cells. The plants use crocin to attract pollinators, and we use it for medical purposes.

Research shows that plants get the power to produce a whole arsenal of genetic tools to help them survive by a process called tandem gene duplication. Dr. Victor Albert, a co-author of a study published on BMC Biology, says that plants can duplicate some parts of their genetic toolkit and tinker with the functions.

Many of the processes and tools we have came from studying the design built into the living things around us. That is why the writer of Romans 1:20 says, “..the invisible things of God from the creation of the world are clearly seen, being understood by the things that are made…” The chemistry seen in the botanical world is an excellent demonstration of the wisdom of their design.

There is much more to God’s amazing design in the plant world. Tomorrow, we will bring you more on plant chemistry for survival.

— John N. Clayton © 2020