Social Distancing in Animals

Social Distancing in Animals

It is interesting how difficult it seems to be for humans to practice social distancing to control disease. Scientific American published an article about social distancing in animals. Disease control is a basic need for all animals, but only humans create vaccines. So how do animals in the wild prevent the spread of disease?

Research on spiny lobsters shows that lobsters infected with a virus called Panulirus argus give off a smell in their urine that causes other lobsters to leave the area. Because of the economic value of lobster populations, much research has gone into understanding how this social distancing works.

A particular fungus spreads its spores by physical contact between ants. Other ants keep infected ants away from the colony and especially away from the queen and the nurse ants that take care of the brood to protect the ant population from the threat. Researchers have discovered social distancing in animals such as finches, guppies, mandrills, and mongooses. They all have procedures to isolate infected individuals and prevent the spread of disease.

Interestingly, God’s design for life includes social distancing in animals to stop viruses and fungi from spreading among their populations. Humans should not only be concerned about distancing from infected humans, but also from those animals that can spread diseases that affect humans. Trying to have animal pets that can carry diseases that threaten humans seems to be something we should all reconsider.

— John N. Clayton © 2020

Data from the August 2020 issue of Scientific American (page 37).

Evidence for Design in Symbiosis

Evidence for Design in Symbiosis
Nymphidium leucosia caterpillar being tended by Crematogaster ants

The natural world is full of examples of two species living together in a way that each benefits the other. This mutualistic relationship is known as symbiosis. In some cases, the species are totally dependent on the relationship for their survival. In many plant/animal relationships, the animal depends on a plant for food, and the plant depends on the animal for pollination or the spreading of seeds. We see evidence for design in symbiosis.

One of the most interesting symbiotic relationships is between ants and butterflies. Scientists refer to the caterpillar in this relationship as being myrmecophilous, which means “ant-loving.” Dr. Philip Devries has written several articles in scientific journals about the caterpillars of certain butterfly species and their symbiosis with ants. The caterpillars feed on the nectar of croton trees, but they have a mortal enemy in the form of wasps. The wasp will find a caterpillar, kill it by stinging and then eat it. If ants are present, they will drive off the wasp and protect the caterpillar. Devries has covered some croton trees with ants, and they will have many caterpillars, but trees without ants will have very few caterpillars.

So the ants benefit the caterpillars, but what do the ants gain from this relationship? The caterpillars have organs on their posterior which extrude a clear liquid containing amino acids but virtually no sugar. The croton tree has a secretion that is 33% sugar but has very little nutritional value. The ants get vital nutrition from the caterpillar even though what they get is not sweet.

The caterpillar has other ways of attracting ants, including an organ on its back that secretes an ant pheromone that chemically attracts them. The caterpillar also has an organ that attracts ants by sending sound vibrations through the wood of the tree. Because of this feature, Dr. Devries coined the term “singing caterpillars.”

One of the great challenges to evolutionists is explaining how such a complex system of symbiosis happened by chance mutations. The more we study such relationships, the more different systems of design we see in the natural world. The more relationships we see, the more difficult it is not to recognize evidence for design in symbiosis. It speaks to us about God’s wisdom and design that allows the biological world to exist.

— John N. Clayton © 2020

An article by Dr. Devries appeared in Scientific American, October 1992, pages 76-82.

Ant Farmers at Work

Ant Farmers at Work
Leafcutter Ants at Work Taking Leaf Cuttings to the Colony

We commonly think of animals as opportunists. They find their food and eat it or store it for future eating. One of the characteristics of humans that distinguishes us from the rest of the animal kingdom is that we prepare an environment that produces our food. Farmers plant seeds and tend the crops by fertilizing, protecting from threats, and watering when necessary. They also make arrangements for future crops. Entomologists are finding more and more cases where insects do these same things. For example, ant farmers work together to produce their food.

In Fiji, a plant called Squamellaria grows in a cluster with jelly-bean shaped bubbles inside. The opening into the clusters is just the right size for the Philidris nagasau ant to get into the bubbles. As the bubbles send out shoots, the ants defecate inside the cluster, fertilizing the plant. When the plant blooms, the ants eat the nectar it produces. The ants then plant the seeds where new clusters can grow.

Another family of ant farmers is the Atta genus. In their farms, they grow a fungus species that they nourish with leaf cuttings. After cutting off leaf sections, worker ants carry them back to the colony. As the workers transport the leaf cuttings, others ride on the leaves to protect against a parasitic fly species. You might call that pesticide.

At the colony, other ants pulverize and defecate on the leaves to make them ready to nourish the fungi. The ants can’t eat the leaves, but the fungi are their food, and only one fungus species is edible. If another fungus species develops, the ants produce a toxin, which destroys only the invading fungus. This is herbicide use at its best. The Atta ants inspect the fungus several times a day, tending it carefully. The system is so efficient that one Atta nest can grow enough fungus food to feed seven-million resident ants. In the process, the ant colony produces fertile soil that promotes plant growth.

If you saw the 1994 Disney animated Lion King movie, you saw Atta ant farmers at work. Remember that fungi are not photosynthetic. No sunlight is needed for Atta ants to grow their food. They simply carry in the nutrients for the fungi to grow, and then they eat the fungi. We do the same thing with much of our meat, providing plant material for chickens or pigs to eat, and then eating the animals that we fed. In the case of the ants, they eat only one food, which simplifies farming enormously.

We know it takes incredible planning and design to manage a farm. No chance process produces most of the foods we eat. It requires meticulous planning and careful application of fertilizers, pesticides, and herbicides. As scientists study insect farming, they see a design that is carefully and intricately produced.

Data on the ant farmers came from Science News, April 25, 2020, pages 16-20. The subtitle of the article is, “Could our agricultural role models have six legs?” This reminds us of the challenge in Proverbs 6:6-8: Go to the ant … consider her ways, and be wise. She has no guide, overseer or ruler but provides her food in the summer and gathers her food in harvest.” The title of the article is “The First Farmers.” We might amend that to be “God’s First Farmers.”

— John N. Clayton © 2020

Click HERE to learn about a special tool leafcutter ants use.

How Many Bugs Are in Your Home?

How Many Bugs Are in Your Home?
Would you like to guess how many bugs are in your home? In the fall of 2017 researchers from the California Academy of Sciences published a survey of the bugs in 50 homes in and around Raleigh, North Carolina. The researchers took 10,000 samples from basements, bedrooms, kitchens, and attics. They identified 579 species from the 304 families of arthropods known to science. Arthropods include insects, mites and, spiders.

The researchers found ants, carpet beetles, gall midges, and cobweb spiders in 100% of the homes. In many of the houses, they found booklice, dark-winged fungus gnats, cellar spiders, scuttle flies, and dust mites. Misha Leong who was the lead author of the study says that most homes contain hundreds if not thousands of individual arthropods.

It is interesting that as people move toward buying organic and buying in bulk, they are increasing the bugs in their homes. Indian meal moths, for example, can contaminate oatmeal or chew through a sweater. They lay eggs in our food and closets, and the larvae chew through packaging leaving a mess of silk and frass (waste) behind. If we use the food quickly enough we eat the eggs, and since they don’t hurt us, we don’t even know they are there.

The reality is that we have and will always have lots of bugs in our homes. Many of them are beneficial to us. Booklice, for example, eat fungi and mold. Spiders eat insects and other harmful agents including flies and mosquitoes. Harmful spiders like the black widow and brown recluse are rare. Studies have also shown that many of our chronic diseases are related to our failure to be exposed to biological diversity. Leong says, “Rooms with more kinds of arthropods may be healthier rooms.”

God did not place us in a sterile world. The more we learn of what we live with each day, the more we realize the complexity of life. Living with bugs is essential to our long-term survival. How many bugs are in your home?
–John N. Clayton © 2018

Animals Farming and How to Define Humans

Animals Farming
When I was in high school in the 1950s, a human was defined in terms of making tools and cultivating food. The idea that tool use is unique to humans has been disproven many times. Birds, apes, and some fish have all been shown to use tools. We even have examples of animals farming.

In 1967 studies were released showing that Attine ants were gathering fungi into groupings, and then using the fungi as their sole food source. Recent studies have verified that Attine ants get the amino acid arginine from the fungus that they grow in plots. The ants provide the moisture the fungus must have, and the fungus provides the arginine the ants need. This symbiotic relationship is one of many in the natural world that show a critical balance in the processes and workers that allows complex life to exist on Earth.

The definition of what is “human” from a scientific standpoint is very difficult, because complex chemical relationships exist in both the plant and animal kingdoms. These processes can duplicate what is considered to be unique to humans. Things like brain size also cannot be used because of the huge variations that exist among all living things.

Since we have observed animals farming, we know that even that is not a human peculiarity. In recent months scientists have found human remains with brain sizes smaller than what is usually ascribed to humans. So how do we define humans? Humans were created in the image of God, and that definition is the only one that really works. You can see it by observing a human’s ability to create art and music, to worship God, to feel guilt and sympathy, and to be able to learn to think and reason.
–John N. Clayton © 2017
Reference: Science News, November 11, 2017 page 4.