Average Star? – No Way!

Average Star? – No Way!
In the past, astronomers thought that the Sun was just an average star. After all, there are hotter stars, and there are colder stars. There are larger stars, and there are smaller stars than the Sun. If you plot the luminosity of all visible stars, the Sun falls near the middle of the system.

However, in recent years, it has become clear that the Sun is not an average star, but an extraordinary star. Without specific properties of our “oddball” star, life on Earth would not be possible. Here are just four of the many unique features of the Sun:

1-Most of the stars in the universe are binary or trinary stars. That means they are actually two, three, or even more stars orbiting each other although they appear to be a single star. A life-supporting planet could not survive that arrangement.

2-The Sun is relatively stable while most stars have much more violent flares that send out lethal radiation.

3-The Sun produces light in the proper wavelength to sustain life. Sunlight has the right wavelengths for photosynthesis and does not have the high-energy wavelengths of other stars.

4-Our Sun also has the right temperature and size to allow a large solar habitable zone where Earth can have an elliptical orbit and still support life.

There are many more “special” features that make our Sun more than an average star. If we didn’t have an above average star, we wouldn’t be here. We see our special star as another evidence that the Sun and our solar system is the work of a Master Designer.
–Roland Earnst © 2018

See Through Objects

See Through Objects
How is it possible for us to see through objects (like air, water, and windows) and not through others (like wood, steel, and window blinds)?

Light is a form of electromagnetic wave energy oscillating in a particular frequency range and energy level. There are many more frequencies (and energy levels) in the spectrum of electromagnetic waves. X-rays are electromagnetic waves at a higher frequency than light. Radio waves from cell phones, radio, and Bluetooth devices are also electromagnetic waves at a lower frequency than light. We can’t see the waves that are above or below light frequencies because our eyes were not designed to see them.

We say that an object is opaque if we can’t see through it and transparent when we can see through it. When some light passes through an object, we say that it is translucent. Wood is opaque to visible-light frequencies, but it is transparent to electromagnetic waves in other frequency ranges. For that reason, we can listen to the radio or use our cell phones or wi-fi inside our houses. Our bodies are partially transparent to X-rays. That allows doctors to use X-rays to check for broken bones.

If our eyes were sensitive to radio waves and not light frequencies, we would be able to see through most solid objects. Then we would not only lose our car keys, but we would also lose our car–and our house too! The things we need to see would be invisible, and all of the electromagnetic waves around us would fill our vision with confusion.

Electromagnetic waves of different frequencies can pass through some materials but not others because of their wavelengths and the energy levels of the electrons in the atoms of the materials. So X-rays can pass through skin and muscle better than through bones. Radio waves can pass through wood, but not through steel. Light can pass through clear glass, but not wood or steel or cookie dough.

The complexity of this system allows us to see those things we need to see, like solid objects that our bodies cannot pass through. It also enables us to see through objects that we can pass through, like the air or water. It even allows us to see through objects which can protect us, like glass windows in our homes and cars. At the same time, it enables us to have cell phones, MRIs, and wireless headphones which use electromagnetic waves that can pass through objects without being seen. This very complex system took some incredible engineering by a Master Engineer.
–Roland Earnst © 2018

What Is Light?

What Is Light?
A question that scientists cannot fully solve is the nature of light. What is light? Is it a wave or is it a particle?

Light has wave properties. It travels in straight lines, but it can be reflected from objects like mirrors, or refracted as it travels through objects like water or glass. Different frequencies of light waves are bent in varying amounts by a prism to show the colors of the spectrum. Light, like sound waves, can travel through gases (air), through liquids (water), or through solids (glass).

But light can also do something that waves normally cannot do. Light can travel through empty space. Because of that and other properties of light, we say that light consists of particles called photons, which act as if they have mass. Photons can knock electrons out of crystals in what we call the photoelectric effect. That’s how solar panels generate electricity from sunlight. So light in motion seems to have mass since it can pass through a vacuum or knock electrons out of their orbit. However, when we stop light, it has no mass. If you shine a light on an object, the light doesn’t make the object any heavier.

What is light? While science ponders that question, we use light every day, and we couldn’t live without it. The question of how light can have properties of both a wave and a particle has baffled scientists for centuries. Even though that answer to that question may never be fully understood, we continue to enjoy and use it every day.

We can see that the simple phrase “let there be light” (Genesis 1:3) is an incredibly complex command.
–Roland Earnst © 2018