Martian Global Aurora

Martian Global Aurora
On October 6 NASA’s daily space news website apod.nasa.gov contained pictures of a Martian global aurora. Because Mars has virtually no magnetic field, the radiation level goes sky high during solar storms. In the latest storm, radiation levels doubled–which would have been dangerous to life on Mars.

Earth’s magnetic field is very strong, and deflects radiation coming from the Sun. The radiation is deflected toward the poles, which is why we see the auroras near the poles. By deflecting the radiation, the magnetic field protects life on the Earth from dangerous levels. The more we learn about the cosmos, the more we see factors that make life possible on Earth. Our magnetic field is one more example of the design of our planet.

Looking for life in space is not just about whether there is water on a planet. There are a huge number of other factors that must be present. A strong magnetic field to shield from radiation is just one of those factors. Of course, an atmosphere suitable for life is also a requirement. NASA has a space probe called MAVEN (Mars Atmosphere and Volatile EvolutioN) orbiting Mars. The purpose is to find out if Mars lost its atmosphere due to not having a strong magnetic field.

The Martian global aurora is just one more reminder of the blessing of life on planet Earth. It also indicates that life on this planet is no accident.
–John N. Clayton © 2017

Eclipses Are Not Omens

Eclipses Are Not Omens
By now everyone should know that there will be a total solar eclipse across the United States tomorrow. We have been writing about it in our posts for the past week. Please go back to any of them for more information. We hope that everyone knows that eclipses are not omens of some mysterious event. They are a natural phenomenon of the solar system that God designed.

The first written record of a total solar eclipse was in China in the year 2134 B.C. Apparently, that eclipse took everyone by surprise because two royal astrologers who failed to predict it, were beheaded for their crime. Since that time, people have often interpreted eclipses as omens or signs from God (or the gods) of some impending disaster. Human history has many instances of people interpreting an eclipse as a sign that something, usually bad, was about to happen. That is superstition and is not supported by the facts.

In recent years some Christians have declared eclipses, comets, or celestial alignments to be a sign that Christ is about to return or that God was about to send judgment on a nation. There have already been such claims about the total solar eclipse of 2017. That is both untrue and counterproductive for the Christian faith.

If you hear anyone saying that this eclipse is a sign of God’s judgment or Christ’s return, don’t believe it. Jesus made it clear that nobody knows when He will return. (Matthew 24:36 and Mark 13:32) We should always be prepared for Christ’s return because we can’t predict when it will be. It may be today, or it may not be in our lifetimes. Just remember that eclipses are not omens and neither are any other natural events.

Using omens or numerology or personal “revelations” to predict the end of the age and the return of Christ not only makes the false prophet look foolish, but it is a bad reflection on Christianity. It’s both bad science and bad theology. Nobody knows when Christ will return, but when He does, everyone will know it. (Philippians 2:10)
–Roland Earnst © 2017

Chaos Mathematics and Solar System Design

Chaos Mathematics and the Solar System
One of the ongoing mysteries about the solar system is the question of how the orbits of the planets and other objects function. If the solar system consisted of only the Sun and the Earth, the motion of the Earth could be easily calculated by a simple formula. When you add other planets and moons, all tugging and pulling on Earth in different ways at different times, no simple mathematical formula explains what is taking place. The solar system seems to be incredibly stable, but why should that be? Chaos mathematics helps us see design in the solar system.

For hundreds of years, astronomers and mathematicians have wrestled with the questions that relate to the consistency of the solar system. Why does Mars not get pulled out of its orbit and crash into Earth? Why does Earth not drift closer to the Sun when it is pulled on by the gravitation of the inner planets? How does the Moon’s gravity affect Earth’s orbit and rotation?

Modern computers have given us spectacular advances in understanding planetary motions. The simple calculation gets complicated when you add a second planet to the solar system. With three objects tugging on each other and the Earth no longer follows a precisely elliptical orbit. Earth experiences different gravitational pulls at different times depending on the distances between the objects. With each planet, moon, and even asteroid the calculations become more difficult.

Since no simple formula accurately describes the planetary motions, French astronomer Jacques Lasker and others have used an advanced technique called chaos mathematics. The term chaos in this application does not mean a disorderly system. Chaos refers to situations in which the behavior of a dynamic system depends sensitively on the initial variables that control the final outcome. In this case, each of the planetary gravitational effects is written as an equation called a differential equation. By carrying all of the equations out to include many variables and then averaging the equations, Lasker was able to describe the orbits very successfully. Other scientists have found that adding other influences such as the effects of relativity increase the accuracy and predicted stability of Earth’s orbit.

The importance of this work is that it shows why the solar system consists of many objects and not just the Earth and Sun. A resonant system of gravitational forces is needed to keep the stability and consistency of our orbit around the Sun. Chaos theory and the use of computers that can do incredibly complicated calculations have opened the door to a better understanding of our complex solar system.

Romans 1:19-22 tells us that we can know that there is a God through the things He has made. Psalms 19:1 and Isaiah 40:26 tell us to examine the heavens and see the handiwork of God. Chaos mathematics tells us that the initial state is crucial to the outcome. God established the initial state which has given us our present stable solar system.

The more we learn of the creation, the more we learn of the Creator. Chaos theory in mathematics shows us the wisdom and planning built into the orbit of our planet around the Sun.
–John N. Clayton © 2017

TRAPPIST-1 Star System Revisited

TRAPPIST-1 Planet Lineup - NASA
TRAPPIST-1 Planet Lineup – NASA Illustration

We commented in a previous post about extra-solar planets (planets orbiting other stars), and whether those planets could have life on them. The media seem to convey the idea that there are hundreds of “earths” all containing life-forms similar to us. They suggest that if there are many Earth-like planets with life on them, then that indicates that Earth and the life on it came about by chance processes. In February, NASA called a special news conference to announce that they had found a star they call TRAPPIST-1 which had seven Earth-sized planets orbiting it in the “Goldilocks Zone.” The Goldilocks Zone is the area where water could exist in the liquid state. Many media sources were quick to announce that NASA had found seven planets that were “Earth twins” and almost surely would be inhabited.

Let us emphasize again that finding life in space is not an issue of whether God exists. If scientists find life in space, it will have been created by God and will have a purpose in existing. This particular find, however, is just another example of how quickly and irresponsibly the media will jump to promote an agenda that will sell. As more data has become available, it is becoming increasingly obvious that this seven-planet system is not an ideal place for life. In fact, any life form that happened to be there would be destroyed by the properties of the system.

TRAPPIST-1, the star that serves as the “sun,” is a very cool dwarf star. That means it gives off a very limited spectrum of light. The critical wavelengths required for photosynthesis and chemosynthesis are simply not present. The masses of these planets range from .4 to 1.4 times the mass of Earth. That means the smaller planets will almost surely not have an atmosphere since they are smaller than Mars. The length of time for the planets to orbit their star varies from 1.5 days to 20 days. That makes a very short year. They are all less than 6 million miles from their parent star. That means all activity on the star would likely be lethal to life-forms on the planets. For a comparison, Mercury, the planet closest to our Sun is separated from it by 36.8 million miles. Earth is 93 million miles from the Sun.

God may have prepared other Earth-like planets, and they may have even been equipped with life. The point is that it is easy to see our planet’s uniqueness, design, and careful planning. We haven’t yet found anyplace like it in other star systems.
Data from Astronomy, July 2017, page 8.
–John N. Clayton © 2017

Asteroid 2015 BZ-509

Jupiter And Asteroids
Jupiter And Asteroids

A recently discovered asteroid is raising new questions. The cosmos is one of the great evidences for the existence of God. Romans 1:18-20 tells us that “we can know there is a God through the things He has made.” Psalms 19:1 tells us, “The heavens declare the glory of God; and the firmament shows His handiwork…” We see a constant stream of new proposals year after year giving possible scenarios about how the solar system and Earth were produced. In the nearly 50 years that we have been writing, we have seen a dozen or so theories advanced and discarded because they couldn’t account for new observations.

This month Science News (May 13, 2017, page 5), carried a story about a strange asteroid. This will once again cause some rearranging of the current best guesses as to how the solar system and the Earth were formed. Research reported in Nature magazine (March 30, 2017) shows an asteroid that revolves around the Sun backwards, even though it is in Jupiter’s orbit. If you were to look at the solar system from the north star, you would notice that everything revolves around the Sun in a counterclockwise direction. Moons, asteroids, and planets are basically all in one plane and all moving the same way. Jupiter is the most massive planet in the solar system, and it has a multitude of rocks called asteroids that orbit around the Sun in the same direction. Now we have an asteroid that is in Jupiter’s orbit but revolves clockwise around the Sun.

If you think about that for a minute, you will see that it would logically follow that in the first orbit this asteroid would have slammed into Jupiter like a car driving the wrong way down a one-way street. In time at least, Jupiter should have sucked in this wayward hunk of rock. The orbit of asteroid 1015 BZ-509 is such that in one orbit it goes on one side of Jupiter and on the next orbit it goes on the other side of Jupiter, so the gravitational jerk of Jupiter is canceled out. Computer simulations show that this arrangement is permanent. It has been going on for a long time and will continue into the future.

We are not suggesting you invent a God to explain this oddity, but theories about the creation have to include anomalies like this one. Every day new observations are made, and on a regular basis they add to the complexity we see in the cosmos. The Creator had to know about, produce, and control all of these things for us to exist. For Bible students, these things do remind us of the truthfulness of Psalms 8:3-4, “When I consider your heavens, the work of your fingers, the moon and the stars which you have ordained; what is man that you are mindful of him? And the son of man, that you visit him…”
–John N. Clayton © 2017

Our Unique Planet

our unique planet
Earth is very different from any other planet we have discovered inside or outside of our solar system. One key factor that makes our planet habitable is our Moon. The Moon serves several important roles, including holding Earth in a stable rotation. The Moon can be a stabilizer for Earth because of its relatively large size. Other planets have moons that are much smaller in comparison to the planets they orbit. Also, other planets in our solar system have multiple moons which make conditions less stable.

Many of the planets discovered outside of our solar system are huge and located incredibly close to their stars with highly eccentric orbits. A solar system in the constellation Serpens was found with a planet seventeen times as massive as Jupiter. Someone might respond with the observation that we can only see the big planets because those systems are so far away. That observation misses the point. These huge, Jupiter-sized and larger planets are located as close to their stars as we are to our Sun or closer. If there is a small planet in the vicinity, it would be twisted and wrenched about by the influences of the large planet. The problem with highly elliptical orbits and life is that there would be too much variation in the amount of energy that the planet receives from its star. Earth’s orbit is only slightly elliptical giving us stable temperatures. If we had only one planet in our solar system with a radically elliptical orbit, there would be a danger of it crashing into our planet. Circular orbits are important for stability. The instability produced by highly eccentric orbits of large planets would make the area sterile and void as far as life is concerned. Everything we see indicates that our solar system is a cosmic oddball.

There are many properties of our planet, Sun, solar system, and the galaxy in which we live that have to be exactly as they are for any kind of life, not just intelligent life, to exist. The galaxy has to be the right type of galaxy, we must be in the right position in the galaxy, and our Sun has to be the right type of star and at the right age in its life process. Our planet must have the right size, mass, tilt, magnetic field, distribution of land masses, chemical makeup, atmosphere, distance from the Sun, and much, much more.

To calculate the overall probability, you must multiply the probability of each of the dependent variables. Every time scientists find a new variable that has to be precisely determined for a life-sustaining planet to exist, that probability is multiplied by all the other probabilities. Considering all of the required factors and the probability of each and multiplying them all together, the total probability of another planet like Earth is exceedingly small. “In the beginning, God created the heaven and the earth” takes on a whole new level of meaning as we continue to gain knowledge about the cosmos.
–John N. Clayton and Roland Earnst © 2017