Periodic Table of Elements

Periodic Table of ElementsOne of the great accomplishments of science has been the organizing of the elements into a form that allows us to use chemistry in amazing ways. In 1789 Antoine Lavoisier published a list of 33 elements grouping them into gases, metals, nonmetals, and earths. For the next 100 years, chemists searched for a better classification system. As the understanding of the design of atoms improved, scientists developed the periodic table of elements.

In 1869 Dmitri Mendeleev published the first table designed to show periodic changes in the properties of the elements. He was even able to predict the discovery of elements unknown at the time that would fill out his chart. As scientists further refined the periodic table of elements, it became even more useful. The horizontal rows are called periods, with metals on the left and nonmetals on the right. As you move from left to right in a period, the elements become less metallic. As you move from top to bottom, the columns, called groups, have similar properties. All of the elements in the last group on the right side of the chart are called noble gases, and they are chemically inactive. The next vertical column to the left of noble gases is called the halogens. They have similar chemical properties, such as the ability to support combustion.

We now know that the reason the periodic table of elements works is because of the electron configurations of the atoms. Chlorine, for example, has an electron configuration that leaves it one electron short of a stable chemical structure. It will exert tremendous force to get a single electron to make its electron configuration stable. Sodium has an extra electron that it would really like to get rid of to gain stability. Those two elements react so that sodium transfers its electron to chlorine and the compound that results is salt – NaCl. Every element in the vertical group with sodium will also react with chlorine in the same way, making lithium chloride, potassium chloride, rubidium chloride, etc.

We now have 118 confirmed elements in existence with 94 occurring naturally. Scientists have produced the remaining 24 elements in laboratories with nihonium, moscovium, tennessine, and oganesson being the most recent. It is difficult to think about atoms and understand how their electrons control their uses and not be impressed by the mind that created this incredibly complex system.

This is a very brief over simplification explanation of the periodic table of elements. It just begins to suggest how the electrons are organized into shells and subshells. The system allows different methods of bonding elements together, creating a diverse population of new compounds that make our lives not only comfortable but possible. For a better understanding, enroll in a basic chemistry class at your local community college or university. “The LORD has done this, and it is marvelous in our eyes” (Psalm 118:23 NIV).
— John N. Clayton © 2019

Why Such a Huge Universe?

Why Such a Huge Universe?
Here are some questions that are often asked by those who are skeptical of the existence of God: Why such a huge universe? How can we believe that a Creator cares about us when we are so insignificant in this vast cosmos? Those questions are worth considering.

There is no doubt that the cosmos is fantastically large. The Hubble Space Telescope aimed at a small area of sky no larger than one-tenth of the diameter of the Moon to take this Hubble eXtreme Deep Field photograph. The few bright spots with points of light radiating are stars. All the rest are galaxies—more than 10,000 of them in this picture! Some of them are as far away as 13 billion light-years, meaning that they were among the first galaxies formed.

If there are 10,000 plus galaxies in this tiny area of sky, that means there are 200 billion galaxies in the visible universe. Each of those galaxies contains an average of 200 billion stars. So why such a huge universe?

There were two critical factors at the beginning of cosmic existence—mass and expansion rate. If the total mass of protons and neutrons had been any less during the first moments of creation, hydrogen would not have fused into any elements heavier than helium. Then the nuclear furnaces of the stars could not have generated the elements carbon, nitrogen, oxygen, phosphorus, sodium, and potassium, which are essential for life. If the mass of protons and neutrons had been any greater at the cosmic creation, all of the original hydrogen would have fused into heavier elements like iron, and life would not have been possible.

The mass also affects the expansion rate. If the cosmic mass density had been less, the expansion rate would have been too fast to form stars like the Sun and planets like Earth. If the density had been greater, the expansion rate would have slower and all stars would have been much more massive than the Sun and would give off radiation too intense for any orbiting planets to sustain life.

In other words, the universe was fine-tuned from the moment it began! Why such a huge universe? Because it had to be. It has just the right mass and expansion rate for us to be here. We don’t think that was an accident. Through the study of astronomy and astrophysics, we can see HOW God created the universe we live in, and HOW He made it possible for us to live in it. The creation of the universe is not magic. It’s a feat of astounding engineering from the very moment of creation.
–Roland Earnst © 2018