Six Elements and Three Interactions

Six Elements and Three Interactions

You can find six elements in the cells of all living things: carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur. Without all of those elements, life, as we know it, could not exist. Living things require many other elements to perform various functions to survive, but those six elements are the building blocks of living cells. Life depends on those six elements and three interactions.

What do those elements have in common? For one thing, they are all non-metals. More important is that those six elements have stable atoms that are not radioactive. Radioactive decay of the atoms of some elements releases alpha or beta particles, which are destructive to living tissue. When those particles enter living tissue, they cause the release of high-energy particles in the cells. That destroys DNA, causing disease and mutations.

We are exposed to some radiation every day, but the amount is usually small, and our cells have a remarkable ability to repair themselves. If any of the six elements released radiation particles, life could not exist. Why are these six elements so stable? We have to consider the six elements and three interactions.

Three carefully balanced forces or interactions work within every atom to give stability. They are the strong force, the weak force, and the electromagnetic force. The strong force binds protons together in the atomic nucleus. The weak force is responsible for radioactive decay. Electromagnetic interaction between the protons in the nucleus and the electrons holds those electrons in the atomic shell while allowing chemical interactions between elements.

The key to stability is the precise balance between the three forces. A change in the value of any of the three would upset the balance, making our atoms unstable and life impossible. Was it mere luck that caused the delicate balance of those forces? Is it possible that the balance and our existence are just chance accidents? We think a better explanation is that the Creator of the universe carefully designed the six elements and three interactions.

— Roland Earnst © 2021

Deserts, Oceans, and Life

Deserts, Oceans, and LifeHave you ever been in a desert for an extended time? Have you ever taken the sand of a desert and looked at it under a microscope? Have you visited the Great Salt Lake or the Dead Sea? Do you feel that deserts are a wasteland? Science has come to understand something about deserts, oceans, and life that shows wisdom and planning that is beyond our wildest dreams.

We now know that deserts, in general, are dried up lakes. The vast Death Valley desert in the United States (pictured) was a lake at one time. So was the Atacama Desert in Chile, which is now called “the driest place on Earth.” The African Sahara was once the largest lake on Earth called the Mega Chad. Fossil hunting in these deserts reveals the remains of fish and plankton called diatomite. Diatomite is the skeletal remains of microscopic forms of life called diatoms. The skeletons are composed of silicon dioxide, which is a very durable substance and is highly porous and lightweight. These factors make it ideal for the wind to carry. Diatomite also contains phosphorous, which is essential for life to exist. Every living cell needs water and phosphorous, which is the second most abundant mineral in our bodies.

To have rain on the Earth requires water vapor, cool temperatures, and condensation nuclei on which the water can condense. When bodies of water become deserts, the dust contains phosphorus. Wind currents of our planet take the dust from deserts which once were lakes and carry it vast distances. Dust particles become the nuclei for condensation of raindrops that carry water and nutrients to the ground. The deserts of the Sahara maintain life in the Amazon basin. Lightning in the storms produces nitrogen to add to the nutrients. This pattern is repeated in every life-filled system on Earth. The Great Plains of the United States are sustained by the dust and minerals of the Mojave Desert, an old inland sea.

The Bible refers to all of this in passages like Isaiah 50:2 and Job 38:37-38. It is not the purpose of these passages to reveal the complex system that produces the water and nutrients for life to exist. However, the references to the dust and the drying of the sea make it clear that the ultimate Author of the scriptures knew the processes used to supply a planet uniquely designed to harbor life. Deserts, oceans, and life speak to the design built into the Earth. They also show us that God has given us what we need for life and the scriptures to provide a reliable guide for living.
— John N. Clayton © 2019

CLEVER Planets

CLEVER Planets Include Earth
We have often mentioned many of the conditions that must exist to make a planet habitable. The number is large and growing as science learns more about Earth’s special life-supporting features. Now NASA has awarded $7,700,000 to Rice University to conduct a five-year study to see what it takes to create a “recipe for a habitable planet.” The project has been named CLEVER Planets, an acronym for Cycles of Life-Essential Volatile Elements in Rocky Planets.

The award comes from NASA’s Nexus for Exoplanet System Science (NexSS). The research team will include experts in astrophysics, atmosphere and climate science, geology, geochemistry, geophysics, and organic chemistry. The investigators are from Rice University, NASA’s Johnson Space Center, the University of California-Davis, UCLA, and the University of Colorado-Boulder. This will be the most in-depth study of what it takes to create a habitable planet.

The lead investigator of CLEVER Planets, Rajdeep Dasgupta of Rice, wrote: “A recipe for life as we know it requires essential elements like carbon, oxygen, nitrogen, hydrogen, phosphorus, and sulfur.” Of course, that is not all that is required to create a recipe for a life-supporting planet. There are also many other conditions including liquid water, the right temperature with stable conditions, a proper atmosphere, and shielding from dangerous radiation. Having an atmosphere requires a planet of the right size to have the right amount of gravity to sustain an atmosphere. To have liquid water and the right temperature requires that the planet must be the right distance from the right kind and size of star. The planet needs a magnetic field to shield from dangerous particles coming from the star. To have a magnetic field, there must be magnetic elements inside the planet. The list goes on and on.

We look forward to seeing the results of the CLEVER Planets study five years from now. The bottom line is that it is very, very difficult to get all of the right ingredients required to create the recipe for a habitable planet. Earth is an exceptional place in the universe.

It seems doubtful that we will find any other planet similar to Earth. But as we have said before, if there is any form of life anywhere else in the universe, that has nothing to do with the existence of God. We believe in a God who can do anything He chooses to do in keeping with His nature.
–Roland Earnst © 2018

Why Such a Huge Universe?

Why Such a Huge Universe?
Here are some questions that are often asked by those who are skeptical of the existence of God: Why such a huge universe? How can we believe that a Creator cares about us when we are so insignificant in this vast cosmos? Those questions are worth considering.

There is no doubt that the cosmos is fantastically large. The Hubble Space Telescope aimed at a small area of sky no larger than one-tenth of the diameter of the Moon to take this Hubble eXtreme Deep Field photograph. The few bright spots with points of light radiating are stars. All the rest are galaxies—more than 10,000 of them in this picture! Some of them are as far away as 13 billion light-years, meaning that they were among the first galaxies formed.

If there are 10,000 plus galaxies in this tiny area of sky, that means there are 200 billion galaxies in the visible universe. Each of those galaxies contains an average of 200 billion stars. So why such a huge universe?

There were two critical factors at the beginning of cosmic existence—mass and expansion rate. If the total mass of protons and neutrons had been any less during the first moments of creation, hydrogen would not have fused into any elements heavier than helium. Then the nuclear furnaces of the stars could not have generated the elements carbon, nitrogen, oxygen, phosphorus, sodium, and potassium, which are essential for life. If the mass of protons and neutrons had been any greater at the cosmic creation, all of the original hydrogen would have fused into heavier elements like iron, and life would not have been possible.

The mass also affects the expansion rate. If the cosmic mass density had been less, the expansion rate would have been too fast to form stars like the Sun and planets like Earth. If the density had been greater, the expansion rate would have slower and all stars would have been much more massive than the Sun and would give off radiation too intense for any orbiting planets to sustain life.

In other words, the universe was fine-tuned from the moment it began! Why such a huge universe? Because it had to be. It has just the right mass and expansion rate for us to be here. We don’t think that was an accident. Through the study of astronomy and astrophysics, we can see HOW God created the universe we live in, and HOW He made it possible for us to live in it. The creation of the universe is not magic. It’s a feat of astounding engineering from the very moment of creation.
–Roland Earnst © 2018

Life Needs Phosphorus

Life Needs Phosphorus
The element phosphorus is used to make matches. Molecular phosphorus has two common forms. There is white phosphorus which is dangerously combustible and is used to make fireworks and weapons. The more stable red phosphorus is used on the side of any box of safety matches. When you strike the match against the red phosphorus, a small amount of it is changed to white phosphorus to ignite the match. But phosphorus has more important uses than starting fires. Life needs phosphorus. The average human body contains about 26.5 ounces (750 grams) of phosphorus. Most of it is in our bones.

Phosphate is a compound of phosphorus and oxygen. It combines with sugars in living tissue to form the backbone of DNA, which is the blueprint for life found in every living cell. Phosphate is also part of a complex organic chemical called adenosine triphosphate (ATP) found in every living organism. ATP releases energy so that cells can function. Life needs phosphorus and could not exist without it in an abundant supply.

Recent research presented at the European Week of Astronomy and Space Science on April 5, 2018, indicates that phosphorus may not be widely available in the Milky Way. The research indicates that it is more random than scientists had previously thought. That means even if one of the recently discovered exoplanets had all of the conditions required to support life, it still might be lifeless without phosphorus.

We have often referred to the many conditions required to make a habitable planet. Here is one more to add to the list. Life needs phosphorus, and apparently phosphorus is less widely distributed than we thought. Phil Cigan, one of the astronomers involved in the study, said, “It’s not a guaranteed thing to have phosphorus abundant everywhere, ripe for the picking. It seems to look like luck plays a bigger role in this.”

Is it just one more chance coincidence that planet Earth has the phosphorus needed for life? We don’t think it is a matter of luck. We think this is another evidence of God’s design for life.
–Roland Earnst © 2018