Just Right Moon

Solar Eclipse Thanks to Just Right Moon
In a few days, a total solar eclipse will cross the full width of the United States, and you can give credit for that to the just right moon.

We have looked at the “how” and “why” of total solar eclipses. We have considered what value total solar eclipses have. We have seen that a total eclipse helped to confirm a very important scientific principle. Also, we pointed out that solar eclipses happen only at the time of the new moon when the Moon is between the Earth and the Sun.

A new moon occurs about every 29 days, so why doesn’t an eclipse happen at each new moon? That’s because the plane of the orbit of the Moon around the Earth is about five degrees off from the orbital path of the Earth around the Sun. Because of that difference, a solar eclipse happens only when the Moon crosses the path of Earth’s orbit around the Sun (called the ecliptic). A TOTAL solar eclipse happens only when the Sun and Moon are exactly aligned.

What would happen if the orbit of the Moon were on the same plane as the ecliptic? At every new moon we would have a total solar eclipse, and at every full moon, we would have a total lunar eclipse. So the Sun would go dark in the daytime somewhere on Earth every month, and the full Moon would also go dark monthly. The influence of the Sun’s gravity on the lunar orbit might cause more serious problems.

No other planet has a moon that plays such an important part in creating an environment suitable for life. The Moon is right where it should be to serve life on Earth. Our just right Moon lights the night, creates the tides that clean our estuaries, stabilizes Earth’s rotation, and occasionally provides a total solar eclipse that gives us a glimpse of God’s marvelous design of our solar system.
–Roland Earnst © 2017

The Value of a Total Solar Eclipse

Albert Einstein and the value of a total solar eclipse
Here is an interesting story of how a solar eclipse helped to confirm a scientific theory and demonstrated the value of a total solar eclipse.

Yesterday, we pointed out that it’s more than a “marvelous coincidence” that the Moon can exactly block our view of the much larger Sun. It’s an evidence of design. When the Moon hides the Sun’s photosphere, scientists can study the chromosphere and the corona to learn more about the Sun and how it affects life on Earth.

In 1687 Isaac Newton presented his universal law of gravitation answering many questions about gravity. One question that remained unanswered was how gravity can act through empty space.

In 1916 Albert Einstein presented his theory of general relativity in which he proposed that mass produces gravity by warping space. Planets orbit the Sun because the mass of the Sun and the planets causes space to be curved. The theory suggested that light would also follow a curved path because of this warping. Einstein calculated how much light would bend near a massive object and proposed that light from distant stars would be bent when it passes by the Sun.

Einstein’s idea seemed hard to believe, but there was no way to disprove it since the bright Sun hides any starlight passing near it. You can’t see the stars during the day.

Then in 1919, British astrophysicist Arthur Eddington made some measurements during a total solar eclipse. While the Moon blocked the Sun’s photosphere, Eddington made precise measurements of the apparent position of stars that were visible near the Sun. Comparing those measurements with the positions of the same stars at night, he confirmed that Einstein was correct. The light was bent as it passed by the Sun.

The eclipse of 1919 demonstrated the value of a total solar eclipse. Many eclipses since then have added to our scientific knowledge. Understanding how gravity warps space has allowed us to make accurate Global Positioning Satellites. We use GPS in our cars for driving, in our tractors for farming, and in our smartphones for hiking, and for many other things. God designed and engineered an amazing world and gave us the ability to understand it through scientific study. Science and faith are friends–not enemies.
–Roland Earnst © 2017

Marvelous Coincidence or Design?

Marvelous Coincidence or Design?
Yesterday we talked about the upcoming total solar eclipse and the fact that the Moon can completely hide the Sun from view. That seems very strange since the Sun is about 390 times larger than the Moon. By a “marvelous coincidence” the Sun is 390 times farther away than the Moon. Since the Sun is 390 times farther away, it appears to be 390 times smaller. For that reason, when we see the Moon and the Sun in the sky, they appear to be the same size.

The Moon can exactly cover the Sun’s disc which we call the photosphere. At the same time, in a total eclipse, we can see the chromosphere, which is the very bright atmosphere surrounding the Sun. We can also see what is called the corona–jets of hot gas which follow the lines of the Sun’s magnetic field. Under normal circumstances, the chromosphere and corona are invisible because of the glare from the photosphere.

Scientists have learned much about the Sun by studying what we can see only during total solar eclipses. Only during a total solar eclipse can scientists study the “solar wind” which sends out streams of particles called coronal mass ejections (CME). CMEs can travel all the way to Earth and knock out communication satellites or terrestrial power grids. Just as scientists work to predict weather on Earth to avoid catastrophes, they want to learn how to predict CMEs to prepare for something that could potentially knock out power or communication to large areas of our planet.

Scientists have also learned some interesting things about the Sun’s temperature during total eclipses. They had measured the temperature of the Sun’s surface to be 6,700 to 11,000 degrees F (3,700 to 6,200 degrees C). However, by observations made during total eclipses, they found that the temperature of the chromosphere is up to 14,000 degrees F (7,700 degrees C) and the corona is 3.5 million degrees F (2 million degrees C)! They are still trying to discover how that is possible.

Was it mere coincidence that the Moon can exactly cover the Sun? We think that God designed it that way so that we can learn how “the heavens declare the glory of God” (Psalms 19:1). We think it is not just a “marvelous coincidence,” but another example of wisdom and purpose in design. Tomorrow we will tell you about what is probably the most significant scientific discovery made during a total solar eclipse.
–Roland Earnst © 2017

Why Solar Eclipses Happen

Why Solar Eclipses?
With a total eclipse of the Sun less than a week away, let’s consider why solar eclipses happen.

A solar eclipse can occur only at the time of the new moon. The Moon appears to us in phases, and the principle phases are new moon, first quarter, full moon, and third (or last) quarter. Those phases are dependent on the relative position of the Sun, Moon, and Earth. The entire sequence of phases takes about 29.5 days, which is a synodic (or lunar) month. The new moon is the time when the Moon and the Sun are on the same side of the Earth.

Obviously, if the Moon is on the side of Earth where the Sun is, we can’t see the Moon at night. It also means we usually can’t see it during the day because the Sun’s brightness hides it except when the Moon passes in front of the Sun. When the Moon only partially blocks the Sun, we see a partial eclipse. When the Moon is precisely aligned with the Sun, we see a total eclipse.

During a total eclipse, the Moon casts a moving shadow over a portion of the Earth. Those who are outside of that shadow can still see a partial eclipse. How much of the Sun is hidden by the Moon depends on how far the viewer is from the shadow. People all over North America will see the eclipse that is coming as a partial eclipse. It will only be total for those who are in the 70-mile-wide path of the shadow that will travel from Oregon to South Carolina.

The fact that the Moon can completely cover the much larger Sun, as it will do in the coming eclipse, has been described as a “marvelous coincidence.” We think God planned it that way. Tomorrow we will tell you why solar eclipses with the Moon exactly covering the Sun are important.
–Roland Earnst © 2017

Total Solar Eclipse of 2017

Total Solar Eclipse of 2017
On August 21 people across North America will have a unique opportunity to see a total solar eclipse. It is a very rare event, and especially rare to have so much of the United States involved. The experience itself is worth a considerable drive if you don’t live in a zone of totality.

The Moon is just the right size to cover the Sun. That means that the shadow of the Moon will fall on a small area of the Earth. Normally the bright photosphere of the Sun overpowers everything else. In a total eclipse of the Sun, the photosphere is covered, and you can see the outer atmosphere of the Sun called the corona. When light from the photosphere shines through a valley on the Moon just before and after totality, a blast of bright light appears to viewers on Earth. It looks like a huge diamond ring.

The sky is not the only place where strange things happen. We enjoyed a partial eclipse when I taught astronomy at Riley High School in South Bend, Indiana. We made a point of telling our 1600-member student body what was going to happen. We set up our telescopes and pin-hole cameras to project the event onto poster board. The principal allowed the whole student body to gather in front of the school.

When the eclipse started, there was the usual teenage horsing around as the Moon began to cover the Sun. All of a sudden the kids got very quiet as it became noticeably darker and you could feel the air become cooler. Dogs started howling as the eclipse progressed. Leaves in the maple tree in front of the school projected small pin-hole images on the sidewalk of the Sun with a chunk missing. We even had a few kids who became disturbed by what was happening. This was not a total solar eclipse, but just a partial eclipse which didn’t cover the entire Sun. Those who live near the path of totality will have the rare experience of seeing complete coverage of the Sun and darkness in the middle of the day.

It is amazing that our solar system is designed in such an incredible way that even high school students with a knowledge of math and astronomy can predict when the eclipse will start, reach totality, and end. The fact that the Moon is just the right size to cover the Sun is remarkable. In the past, humans believed that eclipses were the prognosticators of a coming disaster. For us, the total solar eclipse is simply a wonderful display of the precision and design built into our solar system and the fact that we can understand what God has done by studying the events that we see in the sky.

A word of warning–don’t look at the eclipse with your naked eye. Special eclipse glasses are available. Don’t risk losing your eyesight.
–John N. Clayton © 2017

Tyrannosaurus Rex, the Vulture

Tyrannosaurus Rex
We tend to view Tyrannosaurus rex as a 20-foot tall flesh eater who ran down its prey. Some have called this dinosaur “the most efficient carnivore who ever lived.” Science fiction movies like Jurassic Park have probably been the main source of this image, but the fact is that T. rex was nowhere near that fast.

Past studies of T. rex suggested that its huge mass–in the vicinity of nine tons–prevented it from running down much of anything. The muscle strength needed to accelerate that mass is simply not available to any form of life. Now simulations of acceleration and bone strength have verified that understanding. A speed of about 12 mph would have been the top limit for T. Rex and for only a short distance. That means a human could easily outrun a T. rex.

Tyrannosaurus rex was probably more of a scavenger than a hunter. There were other slow-moving dinosaurs such as Edmontosaurus, Triceratops, and Ankylosaurus that T. rex might have been able to catch. It is more likely that the T. rex population were the vultures of their day, not the lions of their day.

God created dinosaurs for a purpose, and every year we understand more about how they helped sustain the ecosystem that produced many of the resources we need. Every little boy seems to be fascinated with the media presentations of these creatures, but they really were not that glamorous.
–John N. Clayton © 2017

SETI Is Still Searching for Intelligence

SETI
A few days ago we wrote about the Search for Extra-Terrestrial Intelligence (SETI). The newest SETI project is in the news because the Chinese government can’t find anyone to manage it. That is in spite of the fact that the chief scientist-manager will receive a $1.2 million-dollar salary plus housing. The job is to supervise the operation of the world’s largest “filled aperture” radio telescope.

This new telescope is designed to search for radio signals from intelligent life in the universe up to 1,000 light-years away as well as to monitor pulsars and detect interstellar molecules. Its name is Five hundred meter Aperture Spherical Telescope (FAST) because it is 500 meters (1600 feet) in diameter. It was constructed in a natural basin in southwest China at the cost of $180 million dollars. Since FAST can’t be turned to receive signals from different directions, it is made up of 4450 metal panels that can be rotated independently to pinpoint different areas of space. Construction has been going on since 2011, and it’s in the testing stage now.

Sixty-five people lived in a village located in the valley where FAST was built. The Chinese government evicted them. Also, to prevent interference from electronic devices in the area, more than 9,000 residents within 5 km (3.1 miles) of the site were also relocated. They were given about $1800 each for relocating. About 500 families tried to sue over the demolition of their homes without adequate compensation. In the end, the Chinese government spent about $269 million to relocate the previous residents in addition to the cost of the telescope.

Now China is searching the world to find someone to manage the operation of FAST. So far they have had no success in spite of the large salary. There are several reasons why they haven’t filled the job. For one thing, the area is very remote and doesn’t have much to offer in the way of entertainment or activities. Also, because of the failure rate of the mirror activators, any scientist who wants to spend time in research using the telescope may end up mostly dealing with technical problems. In addition to those factors, the Chinese government has placed very high requirements on potential job applicants. With the educational and experience requirements, there may be only a handful of qualified candidates in the world.

China will eventually find someone to manage FAST. Calibration of the radio telescope is projected to take three years. Then the operation will require hundreds of astronomers and the SETI project will spend years and large sums of money searching for intelligent life in the universe. We have said many times before that whether life exists anywhere else in the universe has nothing to do with whether God exists. God could choose to create life anywhere, but so far the effort to find signs of intelligent life beyond our planet has not been promising.

What if they get this new radio telescope working and receive a signal from intelligent beings 1000 light-years away? That message would have been sent out 1000 years ago. If we send a “Hello” message back to them, it will arrive 1000 years later. A two-way conversation under those conditions would be slower than postal mail. In the meantime, thousands of people have lost their homes, and hundreds of millions of dollars have been spent plus millions more will be spent to continue the Search for Extra-Terrestrial Intelligence.
–Roland Earnst © 2017

M Dwarf Exoplanets

Imagined M Dwarf Exoplanets
One of the interesting scientific discoveries of the past decade has been that there are planets orbiting other stars (called exoplanets) and that many of these planets may have temperatures that would allow liquid water to exist on their surfaces. There has been a special interest in M dwarf exoplanets.

In theory, all stars could have a possible planet in a zone where the temperatures would be between zero and 100 degrees Celcius. However, that zone could be very small, and there are many factors required to make life possible, and many that would make life impossible. In an article in Science News dated June 24, 2017, (page 18) some of those factors were mentioned. They include stellar flares, gravitational locking, and especially the life expectancy of the star.

Stars age and the period during which their habitable zone could exist in a stable form is very short. M dwarf stars are held up as having long enough lifetimes for water to exist and biological processes to take place. Since they are the most common type of star in the Milky Way (70% of all the stars in our galaxy) scientists are studying them closely. We have reported before on one of them called TRAPPIST-1.

As more data comes in, it is becoming apparent that although M dwarf exoplanets remain as they are for very long times, they are still not stable enough to sustain life. Scientists hoping to find another “earth” orbiting another star are learning that M dwarfs are not good candidates even though they have some of the conditions necessary for life.

As we have said before, if God wanted to, He could create life elsewhere in the universe. However, the special nature of Earth continues to be more apparent the more we learn. As we learn more about the universe, we see more clearly that “the heavens declare the glory of God and the firmament shows His handiwork” (Psalms 19:1).
–John N. Clayton © 2017

Toxic Martian Cocktail

Toxic Martian Cocktail
Mars researchers have discovered a new issue in their attempts to find life on Mars—a toxic Martian cocktail.

One reason scientists believed that life might be possible on Mars was that tests from Martian soil samples show chemicals that are a potential energy source for bacteria. However, because Mars has such a thin atmosphere, ultraviolet radiation levels are very high. A Recent sampling of the Martian soil has also shown that it contains perchlorates, which are toxic to living cells. An article in Scientific Reports on Nature.com said that the UV rays combined with perchlorates as well as iron oxide and hydrogen peroxide together give what the researchers are calling a “toxic cocktail.” The bacteria Bacillus subtilis, which is often found in spacecraft and can survive extreme conditions of space, is wiped out in 30 seconds when exposed to this cocktail.

In other words, the surface soil on Mars can kill living cells. On July 6 Popular Science reported on these findings and indicated that you would have to go six feet below ground to get away from this toxic mix. Surface expressions of life on Mars are almost certainly not going to be found. Deep underground testing is the only possibility for finding life on Mars.

The mass media often oversimplifies what it takes to make life possible on a planet. This oversimplification continues to be bombarded by the facts. Just being in the zone where water can exist as a liquid, called the “habitable zone,” doesn’t qualify a planet as a dwelling place for life. The “uninhabitable zone” keeps getting larger.

The number of variables that have to be tweaked to allow life continues to grow as scientists make new discoveries. The toxic Martian cocktail is another factor that has generally been ignored. God’s creation shows the hand of a Master Engineer arranging all of the variables that make life possible to create the unique planet on which we live.
–John N. Clayton © 2017

Chaos Mathematics and Solar System Design

Chaos Mathematics and the Solar System
One of the ongoing mysteries about the solar system is the question of how the orbits of the planets and other objects function. If the solar system consisted of only the Sun and the Earth, the motion of the Earth could be easily calculated by a simple formula. When you add other planets and moons, all tugging and pulling on Earth in different ways at different times, no simple mathematical formula explains what is taking place. The solar system seems to be incredibly stable, but why should that be? Chaos mathematics helps us see design in the solar system.

For hundreds of years, astronomers and mathematicians have wrestled with the questions that relate to the consistency of the solar system. Why does Mars not get pulled out of its orbit and crash into Earth? Why does Earth not drift closer to the Sun when it is pulled on by the gravitation of the inner planets? How does the Moon’s gravity affect Earth’s orbit and rotation?

Modern computers have given us spectacular advances in understanding planetary motions. The simple calculation gets complicated when you add a second planet to the solar system. With three objects tugging on each other and the Earth no longer follows a precisely elliptical orbit. Earth experiences different gravitational pulls at different times depending on the distances between the objects. With each planet, moon, and even asteroid the calculations become more difficult.

Since no simple formula accurately describes the planetary motions, French astronomer Jacques Lasker and others have used an advanced technique called chaos mathematics. The term chaos in this application does not mean a disorderly system. Chaos refers to situations in which the behavior of a dynamic system depends sensitively on the initial variables that control the final outcome. In this case, each of the planetary gravitational effects is written as an equation called a differential equation. By carrying all of the equations out to include many variables and then averaging the equations, Lasker was able to describe the orbits very successfully. Other scientists have found that adding other influences such as the effects of relativity increase the accuracy and predicted stability of Earth’s orbit.

The importance of this work is that it shows why the solar system consists of many objects and not just the Earth and Sun. A resonant system of gravitational forces is needed to keep the stability and consistency of our orbit around the Sun. Chaos theory and the use of computers that can do incredibly complicated calculations have opened the door to a better understanding of our complex solar system.

Romans 1:19-22 tells us that we can know that there is a God through the things He has made. Psalms 19:1 and Isaiah 40:26 tell us to examine the heavens and see the handiwork of God. Chaos mathematics tells us that the initial state is crucial to the outcome. God established the initial state which has given us our present stable solar system.

The more we learn of the creation, the more we learn of the Creator. Chaos theory in mathematics shows us the wisdom and planning built into the orbit of our planet around the Sun.
–John N. Clayton © 2017