Oxygen Generators and More

Oxygen Generators and More

They are microscopic plants. You may never see them individually, but they exist by the millions on or near the surface of oceans, lakes, and rivers, even in polar regions. Scientists call them phytoplankton which comes from two Greek words that mean “plant drifter.” We call them oxygen generators.

You can see masses of green phytoplankton on the water surface because of the green chlorophyll they contain. Chlorophyll enables them to use sunlight and nutrients from the water to produce the nourishment they need to live. In the process of photosynthesis, they are oxygen generators. Of course, humans and all animals must have the oxygen to breathe, and phytoplankton play an essential role in our climate by controlling the balance between oxygen and carbon dioxide in the atmosphere.

In the ocean, tiny animals called krill eat phytoplankton. In turn, the krill provide the diet for many fish and even for huge baleen whales. Those whales stir up the ocean, bringing to the surface minerals which the phytoplankton need. As whales eat and grow, they take in large amounts of carbon. When they die, their bodies containing the carbon sink to the bottom of the ocean. This well-engineered system helps prevent the build-up of greenhouse gases in the atmosphere.

Phytoplankton are incredibly diverse, with thousands of different species. The microscopic photo shows members of one class of phytoplankton known as diatoms. The carcasses of phytoplankton, algae, and other marine plants deposited on the sea beds long ago became the petroleum we use today.

Diatoms produce silicon shells, and when they die, those shells form deep deposits on the ocean floor. People mine those microscopic shells and use them for what we call diatomite or diatomaceous earth used in industry for fine polishing and for filtering liquids. In addition, gardeners sprinkle diatomaceous earth around their plants to protect them from insect pests. Scientists are also exploring uses for those microscopic shells in nanotechnology.

So, in addition to being oxygen generators, these tiny plants produce energy sources for humans and food for creatures of the ocean and freshwater lakes. Without them, our climate would be much different, and life would be difficult, if not impossible. Chance evolution doesn’t seem to be an adequate explanation for diverse phytoplankton. We see them as another example of design by the Master Designer of life.

— Roland Earnst © 2021

Deserts, Oceans, and Life

Deserts, Oceans, and LifeHave you ever been in a desert for an extended time? Have you ever taken the sand of a desert and looked at it under a microscope? Have you visited the Great Salt Lake or the Dead Sea? Do you feel that deserts are a wasteland? Science has come to understand something about deserts, oceans, and life that shows wisdom and planning that is beyond our wildest dreams.

We now know that deserts, in general, are dried up lakes. The vast Death Valley desert in the United States (pictured) was a lake at one time. So was the Atacama Desert in Chile, which is now called “the driest place on Earth.” The African Sahara was once the largest lake on Earth called the Mega Chad. Fossil hunting in these deserts reveals the remains of fish and plankton called diatomite. Diatomite is the skeletal remains of microscopic forms of life called diatoms. The skeletons are composed of silicon dioxide, which is a very durable substance and is highly porous and lightweight. These factors make it ideal for the wind to carry. Diatomite also contains phosphorous, which is essential for life to exist. Every living cell needs water and phosphorous, which is the second most abundant mineral in our bodies.

To have rain on the Earth requires water vapor, cool temperatures, and condensation nuclei on which the water can condense. When bodies of water become deserts, the dust contains phosphorus. Wind currents of our planet take the dust from deserts which once were lakes and carry it vast distances. Dust particles become the nuclei for condensation of raindrops that carry water and nutrients to the ground. The deserts of the Sahara maintain life in the Amazon basin. Lightning in the storms produces nitrogen to add to the nutrients. This pattern is repeated in every life-filled system on Earth. The Great Plains of the United States are sustained by the dust and minerals of the Mojave Desert, an old inland sea.

The Bible refers to all of this in passages like Isaiah 50:2 and Job 38:37-38. It is not the purpose of these passages to reveal the complex system that produces the water and nutrients for life to exist. However, the references to the dust and the drying of the sea make it clear that the ultimate Author of the scriptures knew the processes used to supply a planet uniquely designed to harbor life. Deserts, oceans, and life speak to the design built into the Earth. They also show us that God has given us what we need for life and the scriptures to provide a reliable guide for living.
— John N. Clayton © 2019