Complex Photosynthesis and Life

Complex Photosynthesis and Life

Photosynthesis is a biochemical process that plants, algae, and some bacteria use to create food and release oxygen into Earth’s atmosphere. We recently pointed out even some sea slugs can use photosynthesis. Complex photosynthesis and life defy accidental explanation.

Chlorophyll is the molecule that drives the process. There are two chemical reactions–one dependent on light and one independent of light. In the light-dependent reaction, sunlight enters the plant and energizes the chlorophyll. The chlorophyll splits water into hydrogen and oxygen and feeds electrons into nearby molecules. The oxygen escapes and the hydrogen is used later. The freed electrons make a molecule called ATP, which fuels cellular functions. With more sunlight, a molecule called NADP is produced.

In the light-independent reaction, NADP combines with the freed hydrogen to make a larger molecule called NADPH. These components, NADPH, ATP, and an enzyme called RuBisCCo, create sugars and other carbohydrates using carbon dioxide and water in a complex chemical process called the Calvin-Benson cycle.

Chlorophyll uses light in the blue and red part of the spectrum, reflecting green light, which is why trees and grass are green. Photosynthesis takes carbon dioxide from the atmosphere and forms the foundation of all food chains on Earth.

We have vastly oversimplified this explanation of complex photosynthesis and life. To believe that it could have happened by chance requires profound faith in luck. Photosynthesis reflects the wisdom of the Creator, who used some incredibly complex processes to establish life on this planet.

— Roland Earnst © 2021

Seaweed Farming in Underwater Forests

Seaweed Farming in Underwater Forests
Salted Dulse

We live in a time of change. We need radically new ideas to handle global warming, food shortages, animal extinction, carbon footprints, and land utilization problems. God has provided more than just land-based resources to meet our food and air quality challenges. Oceans cover more than 70% of Earth’s surface, which seems to be the logical place to address some of these challenges through seaweed farming in underwater forests.

Here are a few advantages offered by seaweed:

1) Seaweed absorbs carbon dioxide. Left alone, it sequesters the carbon at the bottom of the ocean, where it can remain for centuries.

2) Humans can eat some seaweed, such as dulse (Palmaria palmata). It is a nutrient-rich red macroalga that can be used in cooking. Icelanders use it as a snack food.

3) Seaweed can be used as a feed alternative for livestock freeing massive amounts of arable land.

4) Seaweed eliminates the need for watering and applying fertilizer or pesticides while reducing land deforestation.

5) Raising seaweed advances shellfish populations, a significant food source for many people throughout the world.

6) Seaweed reduces ocean acidification protecting ocean life.

7) Seaweed can be grown in areas where land farming is almost impossible. At present, the largest seaweed farm is in the Faroe Islands 62 degrees north latitude, only four degrees south of the Arctic Circle.

Seaweed farming in underwater forests is already practiced by 50 countries around the world today. Our point is that those who blame God for food shortages and environmental issues should realize that God has given us solutions, but He expects us to use them. Instead of using the oceans to dispose of wastes, we desperately need to stop the pollution and start building ocean farms to grow food.

— John N. Clayton © 2021

Reference: World Wildlife Magazine for Spring 2021 pages 14 – 19.

Carbon Atom Design Makes Life Possible

Carbon Atom Design Makes Life Possible

The media seems to be constantly concerned about the harmful effects of our “carbon footprint.” That phrase refers to how much carbon we kick out into the world’s environment in our daily activities. With all the concern about carbon, it is easy to overlook the fact that the carbon atom design makes life possible and demonstrates God’s engineering wisdom.

The carbon atom is one of the lightest atoms in the periodic chart. The relative weight of the standard carbon atom is 12. Uranium, on the other hand, is 25 times heavier. Carbon’s low weight means that things made of carbon are relatively light. Other elements are structured like carbon, but their weights are much heavier. Silicon is twice as heavy, and germanium is six times as heavy.

The carbon atom design makes life possible. Carbon has six electrons, but they are carefully arranged, allowing carbon to have the properties essential to life. All atoms have electrons orbiting the nucleus at different energy levels as you move out from the nucleus. Scientists give these levels letter identifications because of the spectral lines they produce. In a chemistry book, you will see the letters s, p, d, and f used to describe the spectral lines for electron orbitals of all elements in the periodic chart. The d and f orbitals are incredibly complex, but for carbon with only six electrons, the structure is relatively simple.

Carbon has two electrons in the 1s orbital closest to the nucleus and two electrons in the 2s orbital. They orbit the nucleus in a circular path. The next level out from the carbon nucleus is the p orbital, where electrons move in a figure-eight path. Three energy paths are available for two electrons each, and they are at right angles to one another.

Since carbon has four of its six electrons in the first two orbitals, there are only two electrons in the p orbital. That means there are four available openings in the carbon atom’s p orbital, and it fills those spaces by sharing electrons with other elements. If carbon is bonded to hydrogen, which has only one electron in its first orbital, the two elements will share an electron. In that way, hydrogen has two electrons filling its first orbital, and carbon will have one more of the six it needs to fill its last orbital.

Carbon will have to combine with four hydrogen atoms to complete its p orbitals, and the result is methane (CH4). Oxygen has eight electrons, so it needs two electrons to fill its third orbital, and two oxygens will share electrons with one carbon atom giving us carbon dioxide (C02).

Organic chemistry is incredibly complex since many periodic chart elements can share electrons with carbon creating different organic chemicals. This complexity allows life to exist and makes possible all of the medicines and organic materials that are a part of our everyday life. Carbon atom design makes life possible because of the Creator’s engineering wisdom.

— John N. Clayton © 2020

Problems Facing Humanity Today

Problems Facing Humanity Today and Gold Nanoparticles
Gold Nanoparticles Illustration

It is no secret that there are many problems facing humanity today. Doomsday scenarios are all over the web, and they show up in serious scientific writings as well.

The October 2020 issue of Science News carried a feature titled “Scientists to Watch.” As you read through the descriptions of what outstanding scientific minds are doing, you see a great deal of hope for solutions to some of our physical problems. I find it interesting that the researchers are using natural materials and processes that are already operational on a small level in the world around us.

Spider webs are one example. Medical folklore promoted spider webs as a dressing for wounds. New research has shown that spider silk is coated with chemicals that promote blood clotting and prevent infection. Scientists are studying spider silk as a drug delivery system that can produce scaffolding for tissue repair.

Another exciting solution for humanity’s problems today is research showing that gold nanoparticles are a catalyst for converting carbon dioxide into methane and propane. When sunlight shines on the gold nanoparticles, it sets off a series of reactions that take carbon dioxide out of the atmosphere and produce hydrocarbon fuels. Researchers are also studying the natural process where gold and platinum nanoparticles liberate hydrogen from ammonia. This is useful because many industries need hydrogen for processes, such as fuel cell production.

So far, these processes are slow and inefficient, but speeding them up and making them efficient is the subject of research by today’s outstanding young scientists. God has given us the tools to clean the air, get plastic out of the oceans, and stop global warming. Science is recognizing the wisdom and design built into every corner of the world to solve the world’s physical problems. A more pressing need is getting people to look at the spiritual problems facing humanity today.

— John N. Clayton © 2020

Earth’s Atmospheric Design

Earth's Atmospheric Design

One of the many things that make our planet uniquely well designed is the atmosphere. Our atmosphere has the right density to burn up the 10,000 plus meteors that speed into it every year. It’s also dense enough to scatter the cosmic rays and X-rays from space, so we are protected from this deadly radiation by our Earth’s atmospheric design.

Also very important, the atmosphere is thin enough to allow light to penetrate so plants can grow. It contains the proper mix of gasses for all living things to use. There is enough oxygen for us to breathe, but not enough to cause dangerous, uncontrolled combustion. It has the right amount of carbon dioxide to allow plants to live and give us the right amount of the “greenhouse effect.” This proper amount prevents too much heat from radiating off into space, keeping Earth at a temperature that promotes life.

The atmosphere is mostly nitrogen, which is relatively inert, but plants need it to grow. Because nitrogen is inert, it’s released to the soil by bacteria and certain plants, such as legumes or by lightning or tectonic activity. The atmosphere is topped off with a layer of ozone that absorbs ultraviolet energy from the Sun to keep us from being overexposed to the harmful effects of UV rays.

When we look at Earth’s atmospheric design and compare it to that of other planets, we realize that God has given us just what we need for life on this planet.

— Roland Earnst © 2020

Tools to Counteract Greenhouse Gases

Tools to Counteract Greenhouse Gases - Diatoms

People have paid much attention to the accumulation of greenhouse gases in our atmosphere because they play a significant role in global warming. The main culprit in the greenhouse gas list is carbon dioxide. Not only do we exhale this gas, but fires of all kinds produce it. With the recent major fires in Australia, there is even more concern about the amount of carbon dioxide in the atmosphere. But God has given the Earth some tools to counteract greenhouse gases.

The most efficient tool built into the Earth is a microscopic plant called a diatom. There are 12,000 species of diatoms in Earth’s lakes and oceans. Unlike phytoplankton, diatoms are encased in porous, intricately structured silica shells. Examined under a microscope, these silica shells are beautiful, and they are very resistant to change in shape. That means that the spaces between the shells can collect particulate material. So diatoms are used as filtering agents to filter water for swimming pools and as fillers for aerating soils in yards. The shells are used as diatomaceous earth, which is familiar to most of us, especially those who raise roses or tomatoes.

Diatoms can also absorb gases. In the oceans, they absorb massive amounts of carbon dioxide and lock it up in the ocean’s depths. Diatoms capture as much carbon dioxide as all the trees, grasses, and other land plants combined. The fancy latticework of the diatom is not just for humans to admire. Because of the twists and turns of their shells, the surface area of diatoms is much greater than that of smooth shells. The increased surface area maximizes photosynthesis and allows the diatoms greater energy for growth and reproduction.

The life expectancy of a diatom is about six days. Because the silicon is heavy, the diatom at death sinks to the ocean floor or lake, taking carbon with it. One solution to the buildup of carbon dioxide is to catalyze the growth of diatoms. Iron nutrients can do that, and seeding the oceans with iron might be a way to reduce the amount of carbon dioxide in the atmosphere.

Diatoms are one more example of the design built into Earth’s structure to allow the planet to exist over the long haul. While diatoms are not apparent to the human eye, they are tools to counteract greenhouse gases and a possible solution to a modern problem.

— John N. Clayton © 2020

Value of a Whale

Value of a Whale - Humpback Breaching

Many years ago, an atheist challenged my statement that everything in the creation had a designed purpose and filled a need. My atheist friend insisted that the whale is one example of a poorly designed creature with no purpose. He said that they eat massive amounts of the ocean’s food that could be eaten by other, more useful creatures. He also challenged that they contribute nothing to the ecology of the oceans. At the time, I didn’t have a good answer to why whales are useful. Whale oil seemed to me to be a weak answer. Since then, I have learned the value of a whale.

One of the things I love about science is that it continues to look for understandings of the world in which we live. New studies of whales have revealed some facts that show the whale is incredibly useful. The current winter edition of Defenders of Wildlife magazine reports data on the value of a whale.

Whales live a long time, and they accumulate carbon in their bodies. When the whale dies, it takes that carbon to the ocean bottom, removing it from the atmosphere. New research shows that each whale takes 33 tons (30 metric tons) of carbon out of the atmosphere. By comparison, a tree absorbs 48 pounds (22 kg) of carbon dioxide a year. In 60 years, which is the lifespan of most whales, a tree would remove one ton of carbon from the air. Whales play a role in removing the greenhouse gas that people are concerned about today.

In a whale’s lifetime, it will bring minerals to the ocean surface to stimulate phytoplankton growth. This plankton contributes more than 50% of the oxygen we breathe and absorbs 37 billion tons (33.5 metric tons) of carbon dioxide a year. Phytoplankton also sustains many fish species, and today, fishing is a 150 billion dollar industry.

So what is the value of a whale? Defenders of Wildlife maintains that each whale is worth more than two million dollars. God has a purpose for everything He created, but sometimes it takes us a long time to understand how His creatures help us.

— John N. Clayton © 2020

Rossby Waves and Earth’s Climate

Rossby Waves and Earth's ClimateWe have previously discussed the movement of air around the Earth, and the circulation pattern called the Hadley cells. Another important factor in Earth’s climate is Rossby waves.

Because the equator is hot, heated air rises and moves away from the equator, dropping its moisture as it cools. At about 30 degrees latitude, the now dry air falls back to the Earth, producing deserts. As the air reaches Earth’s surface, it moves north and south, creating the trade winds in the subtropical area and the prevailing mid-latitude winds in latitudes between 30 degrees and the polar regions.

A wide range of things alters this simplified picture. When greenhouse gases like carbon dioxide accumulate, they reflect infrared radiation causing the Earth’s atmosphere to become hotter. This effect isn’t uniform, however. Because of melting sea ice, Earth’s poles are affected by greenhouse gases more than the area of the equator. This causes a thermal imbalance between the poles and the equator affecting circulation around the poles and creating Rossby waves.

As the thermal imbalance has become greater and the air more wobbly in recent years, that affects the jet stream. The wobbles this past year have caused the northern jet stream to go further south than usual, bringing cold into Arizona in late spring. When the jet stream swung north, it brought hot tropical air toward the poles. On its way north, it brought unusual amounts of water into Oklahoma while Anchorage, Alaska, got temperatures over 90 degrees for the first time ever. Rossby waves is the name applied to the meandering high-altitude winds that have a major influence on Earth’s weather.

All of this shows us how fragile Earth’s climate is. Weather patterns depend on a wide range of variables which include the:
*size of the Earth’s atmosphere
*tilt of the Earth
*distribution of land compared to water
*chemical makeup of the atmosphere
*kind of radiation coming from the Sun and how that radiation is absorbed and reflected
*nature of Earth’s surface (whether ice or black dirt)
All of those factors go into making Earth a habitable planet.

We exist on this planet because of the precision design and construction of Earth and its atmosphere. The fact that it has stayed stable long enough for human life to exist for thousands and thousands of years is a testimony to the careful design and construction. Proverbs 8 finds “wisdom” speaking about its role in the creation process. Wisdom says she was there before the creation (verse 22-23) and that wisdom was a part of the preparation of the heavens (verse 26-28).

As we see the results of the small changes that have happened to the atmosphere in the past 100 years and the instability of Rossby waves, we wonder at Earth’s design and the wisdom of God who created it.
— John N. Clayton © 2019

Reference: Astronomy, December, 2019, page 64.

Ocean Treasure House

Ocean Treasure HouseOceans are essential for life on Earth. As we learn more about the oceans, we realize more and more how important the ocean treasure house is to our survival.

Fish, shrimp, and lobsters are some of the blessings that come from the oceans. Those vast bodies of water contain a great wealth of biomass that can address human food needs. The very fact that these forms of life lay millions of eggs that can provide massive amounts of food quickly is a testimony to the vast ocean treasure house. As humans conserve and farm these resources, we see the potential for food production with minimal environmental impact.

But food is only one of the blessings that come from the oceans. The oceans of the world provide water for the land. Evaporation lifts massive amounts of water from the oceans. The moisture condenses and falls on the continents providing the vital water needed by all land forms of life.

The oceans also moderate temperatures on the land. When Earth is closest to the Sun, its tilt exposes the Southern Hemisphere to the direct radiation of the Sun. Since oceans mostly cover the Southern Hemisphere, the water reflects much of the radiation, and the rest is absorbed and stored in the water. The water carries this heat toward the polar areas of the planet, moderating temperatures and allowing life to exist in abundance at the higher latitudes.

When the Earth is at its farthest distance from the Sun, the Northern Hemisphere is tilted toward the Sun, exposing the land to the Sun’s radiation. The land surface absorbs more heat radiation and reflects less of it. The waters in the Southern Hemisphere moderate the climate by using their stored energy to supplement the heat from the Sun.

In addition to their thermodynamic uses, the oceans also control the gases that are critical for life on Earth. Photosynthetic processes taking place in the oceans produce most of our oxygen. The oceans are a significant carbon sink, reducing the amount of carbon dioxide that would be in our atmosphere if the oceans did not exist. This not only restricts the adverse greenhouse effects of carbon dioxide but also recycles carbon in ways that benefit the entire planetary ecosystem.

Another ocean treasure house is the minerals they hold. The salt in the ocean is not just sodium chloride (regular table salt). The oceans contain a wide variety of elements that are critical to humans. They include iodine, magnesium, copper, and copious trace elements of biological importance. People who live far from the oceans benefit from these mineral resources because ancient oceans have deposited those minerals on land. Oceans gather and store the elements that humans need. While we have mined these ocean-deposited resources on land, we are now learning to take them directly from the ocean.

As science looks for life elsewhere in the cosmos, it is not likely that we will find it unless we find a planetary environment with oceans comparable to those on Earth. The ocean treasure house is a beautiful feature unique to planet Earth in our solar system. As science observes other stars and other systems, it becomes increasingly clear that planets like ours are exceedingly rare at best. God has provided the ocean treasure house that speaks eloquently of the Creator’s wisdom and power.
— John N. Clayton © 2019

God’s Environmental Solutions

God's Environmental SolutionsWith a growing human population, environmental toxins, the warming of our planet, and the shortages of potable water, we recognize that Earth is under stress. News reports tell of people dying because of ecological problems. It is essential to understand that all of this pain, death, and turmoil are unnecessary. When God created planet Earth, He built into it many self-correcting tools for survival. If you name a major problem that threatens the long term existence of humans, I believe there is a built-in device that can correct the problem. God designed the Earth to withstand even the abuse that selfishness, ignorance, and greed have brought upon it. Here are a few examples of God’s environmental solutions:

Carbon dioxide and global warming. Several greenhouse gases contribute to global warming, but the main one is carbon dioxide. Not only do animals exhale carbon dioxide, but fires produce it, so human-caused fires are a contributor. God beautifully designed planet Earth with tools to contain carbon dioxide. Plants take it out of the air and release oxygen as a product of photosynthesis. This system is highly efficient as a single tree can take care of the carbon produced by one human. Plants in the ocean do the same thing. Human deforestation of both the land and the sea thwarts the system God put in place to sustain life on Earth. God’s environmental solutions are there if we will use them.

Water. Oceans cover roughly 3/4ths of Earth’s surface, but water shortages plague a significant percentage of the world’s population. The obvious problem is that because of minerals in the water, ocean water cannot be consumed directly by humans or most animals or plants. But the 50-quadrillion tons of minerals in the oceans, including 4.5 billion tons of uranium, have 14,000 industrial uses. God’s environmental solutions not only provide enough water for every living thing on the planet but also a wealth of minerals to sustain an advanced society.

Toxins. In the past five years, science has discovered that a Chinese brake fern (Pteris vittata) can survive on arsenic. Arsenic is a significant pollutant poisoning millions of people in the world, causing skin lesions, cancer, and other illnesses. Finding a plant that removes arsenic from the environment is a significant breakthrough. Over the past several years, we have mentioned other plants that provide environmental cleansing. Scientists have found bacteria that eat plastics and others that consume crude oil. These are more of God’s environmental solutions to tackle the plastic trash and oil spills in the ocean.

We need to allocate research funding to learn more about God’s environmental solutions to counter ecological problems. God has given us resources to repair the damage we have done to the environment. Maybe the problems we see around us will bring us to accept what God has provided and have the heart to think beyond our own selfish interests.
— John N. Clayton © 2019

Reference: Scientific American, September 2019, page 18.