Learn from the Animals

Learn from the Animals
We are frequently astounded by what animals can do. As science seeks solutions to problems such as having enough food, knowing how to avoid disasters, and solving medical problems, we frequently see the answers in the designed features of living things. There are many things we can learn from the animals.

How can we have enough food to feed everyone on this planet? One way is to take advantage of animals with high reproductive capacity. A female mackerel, for example, lays about 500,000 eggs at one time. We have relied on animals like cattle which have one offspring at a time, are environmentally unfriendly, and require massive energy to sustain. Many fish, arthropods and mollusks can reproduce massive numbers of offspring, need very little energy input, and give off little or no environmental hazards. Some of them even remove environmentally unfriendly materials.

Can we improve our vision and perhaps restore sight to people who are blind? Studies of the common dragonfly have shown that each eye has 30,000 lenses. Our one lens is limited as to what we can see. The way images are transmitted to the brain in animals allows multiple transmissions. We are learning from insects and chameleons how the brain can reconstruct a useful image from many separate images. A chameleon can move its eyes in different directions, and its brain can interpret the direction and identification of what each eye is seeing independently.

How can we make stronger materials? Beaver’s teeth are so sharp that Native Americans used them as knife blades. The structure of the tooth enamel in the beaver and how the teeth maintain their sharpness is an area where materials science researchers can learn from the animals.

Can we make better drones? Researchers are interested in how high-frequency wing beats can allow better control of flight. Tiny flies known as midges beat their wings over 1000 times a second – twice as fast as mosquitoes. We can even learn from the animals that are almost too small to see.

Examples like these challenge those who would attribute animal design to chance processes and survival of the fittest. The design engineering in the animal world suggests wisdom beyond that of humans. In Proverbs 8:5,22,35 wisdom speaks, “O you simple ones understand wisdom and you foolish ones, have an understanding heart. The Lord possessed me (wisdom) in the beginning of His way, before His works of old. For whoever finds me finds life and shall obtain the favor of the Lord.” Let us be wise as we copy the wise designs of the Creator.
–John N. Clayton © 2018
We invite you to follow our Facebook page which gives daily examples of design in animals and plants. Click HERE to see today’s post.

How Many Bugs Are in Your Home?

How Many Bugs Are in Your Home?
Would you like to guess how many bugs are in your home? In the fall of 2017 researchers from the California Academy of Sciences published a survey of the bugs in 50 homes in and around Raleigh, North Carolina. The researchers took 10,000 samples from basements, bedrooms, kitchens, and attics. They identified 579 species from the 304 families of arthropods known to science. Arthropods include insects, mites and, spiders.

The researchers found ants, carpet beetles, gall midges, and cobweb spiders in 100% of the homes. In many of the houses, they found booklice, dark-winged fungus gnats, cellar spiders, scuttle flies, and dust mites. Misha Leong who was the lead author of the study says that most homes contain hundreds if not thousands of individual arthropods.

It is interesting that as people move toward buying organic and buying in bulk, they are increasing the bugs in their homes. Indian meal moths, for example, can contaminate oatmeal or chew through a sweater. They lay eggs in our food and closets, and the larvae chew through packaging leaving a mess of silk and frass (waste) behind. If we use the food quickly enough we eat the eggs, and since they don’t hurt us, we don’t even know they are there.

The reality is that we have and will always have lots of bugs in our homes. Many of them are beneficial to us. Booklice, for example, eat fungi and mold. Spiders eat insects and other harmful agents including flies and mosquitoes. Harmful spiders like the black widow and brown recluse are rare. Studies have also shown that many of our chronic diseases are related to our failure to be exposed to biological diversity. Leong says, “Rooms with more kinds of arthropods may be healthier rooms.”

God did not place us in a sterile world. The more we learn of what we live with each day, the more we realize the complexity of life. Living with bugs is essential to our long-term survival. How many bugs are in your home?
–John N. Clayton © 2018

Migrating Insects: Another Incredible Design

Migrating Insects - Arthropods
Arthropods

Over the years we have presented data on some amazing migrations. We have had several discussions about the Arctic tern and how it makes its incredible 12,000-mile journey. Research has shown that the Arctic tern uses multiple cues including magnetism, sight, smell, and even sound. We have also talked about whales, salmon, and sea turtles and the way they benefit multiple ecosystems by their migrations. Now we have a new migration that has just been discovered and is equivalent to 20,000 flying reindeer. It’s migrating insects.

According to the study, 2-5 million migrating insects fly over the United Kingdom each year. The study is reported in the December 23, 2016, issue of Science by a team headed by Jason Chapman. Tracking these arthropods involves the use of special radar designed to detect insects. The team estimates that the total biomass of these arthropods is 3200 tons which is 7.7 times more than the biomass of the songbirds in the same area. These are tiny creatures with some of them weighing less than 10 milligrams.

Chapman notes that these arthropods are not just accidentally caught up in the wind. Some of them climb to the top of a plant to launch their flight. Some stand on tiptoe and put out silk until the wind catches them and carries them away. The animals only launch when the wind is to the north from May to June, and in August and September, they launch when the wind blows to the south. Chapman concludes “these arthropods must have some kind of built-in compass plus a preferred direction and the genetics that change that preference as they or their offspring make the return migration.“

We would suggest the programming of the DNA of these creatures is not a product of chance. It is incredibly complex and requires an intelligent programmer. Migrating insects benefit the life forms that depend on them for food as well as having food benefits for themselves. They also avoid weather conditions that could be fatal to them. If that much is happening in the United Kingdom and Africa where the migrations end up, it most certainly is happening throughout the whole world. The complexity of this migration system over the Earth is far greater than anyone imagined.
–John N. Clayton © 2017