Medical Benefits of Spiders

Medical Benefits of Spiders

The entertainment industry has done much to encourage arachnophobia (fear of spiders), and it starts at an early age. Remember, “Little Miss Muffet sat on a tuffet, eating her curds and whey. Along came a spider and sat down beside her and frightened Miss Muffet away.” It’s true that some spiders have venom that is dangerous to humans. However, we can’t let arachnophobia keep us from finding medical benefits of spiders.

There are many potential benefits of spider venom and secretions in medicine and agriculture. Here are five examples:

1) The venom of a Brazilian wandering spider has an ingredient that has been found helpful in treating erectile dysfunction.
2) The venom of a South American tarantula can calm an irregular heartbeat and may be used to treat atrial fibrillation.
3) Australia’s Blue Mountains funnel-web spider has a venom that attacks the nervous system of insects that eat crops but doesn’t affect humans.
4) Spider silk can be used as synthetic muscles for drug delivery systems or robotic devices.
5) Glue secreted by orbed web spiders gets stronger in the presence of water, possibly making it useful for surgery and underwater engineering.


God built these materials into the life processes of spiders so that they could survive and fulfill their purpose in the natural world. The medical benefits of spiders are not alone in the natural world. There are many plants and animals in the creation with chemicals that can have significant medical and agricultural benefits for humans. Science can recognize God’s chemical design and copy it to solve human problems.

In Proverbs 8:22-33, we find Wisdom personified by speaking and describing some of God’s actions in the creation process. The more we know of the creation, the more we understand God’s nature and wisdom.

— John N. Clayton © 2022

Reference: Discover magazine Volume 32 #2, page 80.

Mussel Superglue and Human Problems

Mussel Superglue and Human Problems  Blue Mussels
Blue Mussels attached to rocks

Have you ever tried to glue something underwater? I needed to do that in several situations, and I have tried everything on the market. The various commercial glue and epoxy products don’t last very long underwater. That is especially true when subject to vibration or stress. Somehow, barnacles and mussels firmly attach themselves to boats and rocks underwater. How does this mussel superglue work?

A mussel has glands in its slug-like feet that secrete a glue that hardens into a filament that attaches it to a rock or hard surface in less than five minutes. Within a few days, it has a cable of several hundred such threads that will withstand years of pounding surf. Measurements show it can withstand a force of a thousand pounds per square inch and even stick to Teflon.

The U.S. Navy spends millions of dollars each year trying to find ways to stop crustaceans and mollusks from fouling their underwater equipment. Dr. Herbert Waite, a marine biochemist at the University of California studying mussel superglue, discovered that a mussel has two separate compartments to produce its glue. One compartment contains resin-like proteins, and the second produces chemicals that act like hardeners. When the two come in contact, the proteins harden in minutes.

The mussel superglue contains various adhesive proteins with different functions. Some are catalysts, while others act to separate the filaments. Some contain an amino acid called dopa that makes gels that bond filaments together. These gels have gotten significant attention from dentists and surgeons who need materials that will bond in wet environments.

Undoing mussel glue is another issue that scientists are studying. Understanding how mussel superglue works could lead to anti-glues. Dentists could apply them to teeth to prevent the buildup of dental plaque. Doctors could use anti-glues to prevent cardiovascular stents from becoming clogged. Mussel superglue is another case where studying what God has designed can give us answers to human problems.

— John N. Clayton © 2022

Reference: Discover magazine for February 2003, pages 22-23.

The Amazing Chickadees

The Amazing Chickadees

If you have a bird feeder on your property, you are probably familiar with the amazing chickadees found throughout the United States, Canada, and Mexico. The six North American chickadee species do not have large fat reserves like some birds, such as finches. Instead, their trim size gives them more mobility to evade predators such as cats or sharp-shinned hawks. However, it also means chickadees must find enough fuel daily to maintain their metabolism.

One way chickadees survive is by lowering their body temperature at night. A chickadee’s daytime body temperature is 108 degrees Fahrenheit, but it drops to around 86 degrees at night. This controlled hypothermia is a nocturnal semi-hibernation that slows their metabolism by about 25%. The next day, they must find enough food to maintain their daytime metabolism while replacing fat lost the previous night.

Besides the seeds at our bird feeders, chickadees eat caterpillars, insects, spiders, and conifer seeds. Since chickadees don’t migrate south for the winter, they store food for use during the cold months. Their stockpiles exist in various places, such as wedged into pine needle clusters or tree bark or even pounded into the ground. They store food in the lower branches of conifer trees, so it will be available when the upper branches are covered with snow. Chickadees prepare insects for storage by removing the heads of larvae and the wings of moths.

Storing food for later use requires remembering where it is, and studies have shown that chickadees can remember where they stored items for months. The hippocampus is the area of the brain involved in memory and spatial learning. In the fall, when food storage moves into high gear, the chickadee brain grows new neurons in the hippocampus. Their brain stores visual cues such as the spatial relationship between significant landmarks, allowing them to remember their cache locations from fall until the following spring.

Those of us who maintain bird feeders frequented by chickadees notice that they are not as shy around people as most birds are. The complexity of the amazing chickadees is extraordinary. They are another example of God’s design in the natural world, enabling the survival of a small creature we take for granted. This design speaks eloquently of the fact that we “can know there is a God through the things He has made” (Romans 1:20).

— John N. Clayton © 2022

Reference: National Wildlife magazine February/March 1998, pages 24 -28.

Moths Are Incredibly Beautiful Creatures

Moths Are Incredibly Beautiful Creatures such as Antheraea polyphemus
Antheraea polyphemus moth

Most of us probably have negative connotations about moths. We know that moths can cause problems in agriculture and can infest clothes left unattended in a closet. Moth balls have been in our history for a very long time. But it isn’t adult moths that eat holes in your clothing. It’s their larvae. In reality, moths are incredibly beautiful creatures, and perhaps you have not seen the most beautiful specimens because they are nocturnal.

One moth species known as Antheraea polyphemus can have a six-inch wingspan. The name comes from Homer’s epic “The Odyssey,” in which a giant called Polyphemus ate people. The giant polyphemus moth does not eat people, and neither does any other moth species. There are over 160,000 species of moths, and many of them produce larvae that eat crops that humans grow. However, adult moths have no mouths because they don’t eat anything in their adult stage.

Moths are incredibly beautiful creatures, and like virtually all living things, they are essential for humans in various ways. The domesticated silkworm in America is the larva of the moth Bombyx mori, and there are different species in different countries. Moths pollinate plants that open at night. For example, in the Himalayan ecosystem, they are primary pollinators essential to plant survival.

Some moths dig into the ground, and their larvae support underground ecosystems. The Mopane worm is a moth larva harvested as an important food source in regions of Africa. In the Congo, people eat moth larvae from thirty different species.

There are far more moth species than butterfly species – 160,000 compared to 17,500. As is true of just about everything in the natural world, we must learn how to manage and protect this resource. Mass pesticide spraying is not a positive way to manage this valuable resource God has given us.

— John N. Clayton © 2022

Reference: The Spokesman-Review for 8/4/22.

Fetal Development in the Womb

 Fetal Development in the Womb

One thing that can get lost in the rhetoric about abortion is what happens in the fetal development in the womb. The story begins around the 14th day of a 28-day menstrual cycle when an ovary releases an egg. When the sperm fertilizes the egg, the zygote, as it’s called, contains a mixture of genetic information from both parents. Fertilization usually occurs in the fallopian tube near the ovary that produced the egg.

This already growing zygote must travel to the uterus to implant itself. If the zygote lodges in the wrong place, such as in a fallopian tube, the result is a medical emergency called an ectopic pregnancy. Such a pregnancy can rupture the tube, leading to internal bleeding that can cause the mother’s death.

Once the zygote attaches in the uterus, the mother produces the hormones that nourish and protect it, allowing the growth process to continue. What might be considered a “heartbeat” can be detected long before there are chambers and valves that make up the human heart. Specialized cells create a heart tube that produces a fluttering electrical activity that can be heard with a stethoscope or detected by an ultrasound machine.

When pain signals come from the senses, they must travel to the brain’s cortex which develops at about weeks 24 or 25 of pregnancy. It is amazing that by the end of the first trimester, the developing baby has every organ it will ever have throughout its life. They merely continue to grow and develop.

People used to justify slavery by saying that blacks were humans but not persons. Nobody can support such a distinction from a scientific or moral standpoint. Yet, some have used the same failed logic to justify abortion.

The complexities of reproduction are so massive that there is still much that science doesn’t understand. Nevertheless, it is incredible that an atheist can look at the fetal development in the womb and not be amazed at the beauty and wonder of its design. “For it was you who created my inward parts; you knit me together in my mother’s womb. I will praise you because I have been remarkably and wondrously made” (Psalms 139:13-14a CSB).

— John N. Clayton © 2022

References: Science News for July 16 & 30, 2022, page 6-7; Skeptic Magazine, Volume 27 # 2 2022, page 22.

How Can a Woodpecker’s Brain Survive the Hammering?

How Can a Woodpecker’s Brain Survive the Hammering? - Pileated Woodpecker
Pileated Woodpecker

We live in Michigan with massive numbers of trees all around, allowing us to watch various wildlife. The design that allows our woods to survive involves many animals that plant seeds, prune plants, and control insect populations. One of the leading players in the control of insects is our Michigan woodpeckers. That raises the question, “How can a woodpecker’s brain survive the hammering?”

We have a variety of woodpeckers, but the most interesting to me are the pileated woodpeckers and flickers. These birds not only peck at trees removing insects that could damage the plants, but they also use their pecking to mark territories. One woodpecker hammers on the flashing of the chimney that vents our furnace. The sound is so loud that it wakes me up in the morning. But it also sends a territorial message to all other woodpeckers in the area.

The frequency of the hammering of woodpeckers is around 20 hits a second. Their heads move so fast it is hard to see the motion with the naked eye, and even a photograph at a high shutter speed shows only a blur of the woodpecker’s head. So, the big question is, “How can a woodpecker’s brain survive the hammering?”

The textbooks say that a spongy bone in the woodpecker’s skull acts as a shock absorber to protect the brain. However, recent research has shown that isn’t the case. Not only does a dissection of the woodpecker’s head not show any such bone structure, but high-speed video of three different species of woodpeckers shows that the bird’s brain decelerates at the same rate as the beak. There is no cushion for the bird’s brain.

So that does not answer the question, “How can a woodpecker’s brain survive the hammering?” The answer seems to be in the design of the bird’s brain, not in the area that surrounds the brain. Dr. Sam Van Wassenbergh at the University of Antwerp says that the woodpecker’s brain is so small and of such light-weight construction that the pecking does not generate enough pressure to damage it.

The problem with that explanation is that the woodpecker has the same functions as all other birds and does not show symptoms of a deficient brain. We also know from human studies that brain size is not directly related to intelligence. The design of a woodpecker’s brain to enable it to hammer on trees and other objects (such as chimney flashing) is an example of engineering design. Scientists need to do more research to fully understand the design God put into these birds and perhaps learn what practical applications it might have for us.

— John N. Clayton © 2022

Reference: The Week for August 5, 2022, page 21.

World’s Strongest Pinching Force

Coconut Crab with World’s Strongest Pinching Force
Coconut Crab

If you were to guess the animal with the strongest bite, you might say lions or great white sharks. However, probably no one would suggest a crustacean known as the coconut crab (Birgus latro). Charles Darwin called this animal “monstrous,” and people who live in the South Pacific can tell amazing stories about the strength of this crab. However, it’s not the jaws but the claws of the coconut crab that have the world’s strongest pinching force.

The coconut crab is the largest arthropod on Earth. It can weigh more than nine pounds (4.1 kg) and grow to a width of three feet (1 m) from the tip of one leg to the other. Its claws are so powerful that they can exert a greater pinching force compared to its size than any other animal except alligators. The coconut crab is nocturnal and can use its claws to climb trees and even hang in one position for hours. They also use their claws, known as chelae, to defend against predators.

Other animals can’t break open a coconut, but coconut crabs can do that with their powerful chelae, making that food available to them. Although they are called coconut crabs and live on islands in the Indian and Pacific oceans where coconut palms grow, coconuts are not their primary food. Instead, they eat various fruits, nuts, seeds, the pith of fallen palm trees, carrion, and any organic matter they find on the ground. If they find something that interests them, they will grab it and carry it away, earning them the name “robber crabs.”

Some of the most important animals on Earth are those that cleanup waste. They include birds that eat carrion, insects that use dung in various ways, and many other life forms. Coconut crabs use the world’s strongest pinching force to process organic debris, so it will not cover Earth’s surface. 

An area of the planet with trees that produce tough materials like coconuts would eventually become buried in debris without animals that clean up the mess. Coconut crabs are so efficient that they eat their own exoskeleton when they molt, leaving nothing to contaminate the environment. Coconut crabs are one example of the many animals that recycle organic material. 

— John N. Clayton © 2022

Reference: Encyclopedia Britannica, Wikipedia, and PLOS ONE

Greatest Daily Migration on Earth

Greatest Daily Migration on Earth
Zooplankton in the Ocean

One of the amazing facts about life on our planet is the way living things fill every niche of the environment. As science extends our knowledge of Earth’s remote regions, we find massive amounts of life with incredible diversity. We find the largest animal population on the Earth in biomass, the volume of the Earth occupied, and numbers of individuals in water deeper than sunlight can reach. The ocean depths make up 90% of Earth’s living space, and we now understand that living there are more than a million species that science has not named or described. Furthermore, they are part of the greatest daily migration on Earth.

Every day, ten billion tons of animals known as zooplankton move upward from as far as 3,000 feet below the surface. The zooplankton include copepods, salps, krill, and fish larvae. At only 1,000 feet down, the water is 20 degrees Fahrenheit colder than at the surface, and the pressure is 30 times as great. For a tiny fish larva, making a 1000-foot journey in about an hour would be like a human swimmer going 50 miles in that amount of time. These animals begin their ascent at sunset and stay near the surface until sunrise when they descend back to the cold dark below.

The purpose of this greatest daily migration on Earth is to eat and avoid being eaten. These zooplankton animals feed on phytoplankton, the microscopic aquatic plants that live in the top few hundred feet of water. Fish and squid feed on the zooplankton, which find protection at the great ocean depths. The first hint of this massive migration occurred in World War II when ships and submarines used sonar to sweep the ocean for enemy subs. They discovered that the seafloor seemed to be moving up and down, creating a deep “scattering layer” that reflected sonar signals. Now we have research tools to explore this layer, which turns out to be alive.

Science is just now beginning to understand the importance of the greatest daily migration on Earth. This huge mass of animal life, their excrement, and their remains sequester carbon in the very deep waters, making them rich in nutrients. Winds along the shores of continents push the surface water from the continental edges out into the open ocean. Their exit causes water to come up from ocean depths to the surface along the continent’s edges, bringing nutrients with it.

Our understanding of this mass migration is helping us to understand the carbon cycle, climate change, and many ecological issues. This greatest daily migration on Earth is a part of God’s creation. It reminds us of Proverbs 8:28-29, which says that Wisdom was there, “…when He established the clouds above and fixed securely the fountains of the deep, when He gave the sea its boundary so the waters would not overstep His command, and when He marked out the foundations of the earth” (NIV).

— John N. Clayton © 2022

Reference: Scientific American, August 2022, pages 50 -67.

The Atlantic Puffin and Life’s Adaptability

The Atlantic Puffin and Life’s Adaptability
Atlantic Puffins

Environmentalists express concern that many species will become extinct because of the warming climate. For example, polar bears are having trouble finding food because of the disappearance of the ice islands they use for hunting. A bird species that many are concerned about is the Atlantic puffin. These birds had been hunted to the verge of extinction in the 1800s and are still endangered today.

The main diet of Atlantic puffins consists of hake and herring, which are cold-water fish. However, the change in temperature of the North Atlantic Ocean has caused these fish to no longer inhabit some waters where Atlantic puffins get their food. Because of that, there was concern that Atlantic puffins could become extinct.

The Audubon Society Magazine published an interesting report on a study of the Atlantic puffin’s diet by Will Kennerley. Kennerley discovered that the puffins had shifted the foods they eat and feed their chicks. The study showed that they are now eating 21 different fish species that researchers had never observed them eating before. This nutritional flexibility will help preserve Atlantic puffins, demonstrating that these birds are designed to adapt to a changing environment.

The question of how this principle will apply to other forms of life remains to be seen. A big question is whether this adaptability also applies to animals that eat plants since there are cases where plants are dying out in areas experiencing significant climate changes. However, there is less doom and gloom among people who see examples such as the adaptability of the Atlantic puffin. God’s design for living things makes it possible for life to endure even as the environment changes.

— John N. Clayton © 2022

You can read more in the summer 2022 issue of Audubon Society Magazine (page 21) and online at THIS LINK.

Wasps Are Essential for the Ecosystem

Wasps Are Essential for the Ecosystem

Wasps are essential for the ecosystem, but I have to admit that my experiences with wasps have been mostly negative. I am very allergic to their stings. My only positive experience with a wasp was when I was teaching a homeroom made up of kids who were in trouble with the school or the law — many of whom were wearing ankle bracelets. The night before the first day of school, I was stung over my left eye by a wasp, resulting in my eye being swollen shut and my face badly distorted. When I walked into my homeroom, there was dead silence until one gang leader said in a timid voice, “What does the other guy look like?”

Wasps have been called “nature’s pest controllers” by wasp expert Dr. Seirian Sumner. Wasps are carnivores who lay their eggs in the body of other insects, and the larvae consume the host after hatching. Wasps control aphids, white flies, cabbage loopers, and brown marmorated stink bugs, all of which are a problem for agriculture.

In addition to killing these crop problems, wasps are pollinators. Wasps pollinate 960 plant species, and 164 species depend entirely on wasps. For example, figs could not reproduce without wasps, and more than 1,000 tropical birds and mammals rely on figs for food. In addition, over 100 orchid species depend on wasps as pollinators. So, yes, wasps are essential for the ecosystem.

When you realize all the good that wasps do and understand that only 1.5% of wasp species sting humans, you have to recognize that wasps are a tool of God to enable us to have the food we eat and the flowers we love.

— John N. Clayton © 2022

Reference: National Wildlife magazine, August/September 2022, pages 12-13.

If you want to learn more, there is a new book by Seirian Sumner titled Endless Forms: The Secret World of Wasps published by Harper Collins.